2.用數(shù)學(xué)歸納法證明1+a1+a2+…+an+1=f(n)(n∈N*),在驗(yàn)證n=1時(shí),左邊所得的項(xiàng)為( 。
A.1B.1+a1+a2C.2D.1+a1

分析 由等式1+a1+a2+…+an+1=f(n)(n∈N*),當(dāng)n=1時(shí),n+1=2,而等式左邊起始為1的連續(xù)的正整數(shù)的和,由此易得答案.

解答 解:在1+a1+a2+…+an+1=f(n)(n∈N*)中,
當(dāng)n=1時(shí),左邊=1+a1+a2,
故選B.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是數(shù)學(xué)歸納法的步驟,在數(shù)學(xué)歸納法中,第一步是論證n=1時(shí)結(jié)論是否成立,此時(shí)一定要分析等式兩邊的項(xiàng),不能多寫也不能少寫,否則會(huì)引起答案的錯(cuò)誤.解此類問(wèn)題時(shí),注意n的取值范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知$θ∈(0,\frac{π}{2})$,$sinθ=\frac{3}{5}$.
(Ⅰ)求$sin(θ-\frac{π}{6})$的值;
(Ⅱ)求tan2θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知傾斜角為α的直線l與直線x-2y+2=0平行,則sinα的值為( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{5}}}{5}$C.$-\frac{{\sqrt{5}}}{5}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知O是坐標(biāo)原點(diǎn),點(diǎn)A(-1,1),若點(diǎn)M(x,y)為平面區(qū)域$\left\{\begin{array}{l}x≤1\\ y≤2\\ x+y≥2\end{array}\right.$上一個(gè)動(dòng)點(diǎn),則$\overrightarrow{OA}$•$\overrightarrow{OM}$的最大值為(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.設(shè)全集U=R,若集合A={x|x2+x=0},B={x|x2-x≤0},則A∩B={0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.如果一組數(shù)據(jù)a1,a2,a3,a4,a5,a6的方差是2,那么另一組數(shù)據(jù)2a1,2a2,2a3,2a4,2a5,2a6的方差是( 。
A.2B.6C.8D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知下列命題:
①已知a,b是實(shí)數(shù),若a+b是有理數(shù),則a,b都是有理數(shù);
②若a+b≥2,則a,b中至少有一個(gè)不小于1;
③關(guān)于x的不等式ax+b>0的解為$x>-\frac{a}$;
④“方程ax2+bx+c=0有一根為1”的充要條件是“a+b+c=0”
其中真命題的序號(hào)是②④(請(qǐng)把所有真命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知公差不為0的等差數(shù)列{an},等比數(shù)列{bn}滿足:a1=b1=1,a2=b2,2a3-b3=1.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{$log_3^{b_n}$}的前項(xiàng)和為Sn,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知i為虛數(shù)單位,則復(fù)數(shù)$\frac{1-i}{1+i}$的模為(  )
A.0B.$\sqrt{2}$C.1D.$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案