函數(shù)f(x)的定義域?yàn)镈,若存在非零實(shí)數(shù)m使得對(duì)任意x∈M(M⊆D),有x+m∈D且f(x+m)≥f(x),則稱f(x)為M上的m夢(mèng)想函數(shù),如果定義域?yàn)镽的函數(shù)f(x)是奇函數(shù),當(dāng)x≥0時(shí),f(x)=|x-a2|-a2且f(x)為R上的4夢(mèng)想函數(shù).那么實(shí)數(shù)a的取值范圍( 。
A、-1≤a≤1
B、0<a<1
C、-2<a<2
D、-2≤a≤2
考點(diǎn):函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)分段函數(shù)的意義,對(duì)f(x)的解析式分段討論,可得其分段的解析式,結(jié)合其奇偶性,可得其函數(shù)的圖象;進(jìn)而根據(jù)題意中函數(shù)夢(mèng)想的定義,可得若f(x)為R上的4夢(mèng)想函數(shù),則對(duì)任意x,有f(x+4)≥f(x),結(jié)合圖象分析可得4≥4a2;解可得答案.
解答: 解:根據(jù)題意,當(dāng)x≥0時(shí),f(x)=|x-a2|-a2
則當(dāng)x≥a2時(shí),f(x)=x-2a2,
0≤x≤a2時(shí),f(x)=-x,
由奇函數(shù)對(duì)稱性,有則當(dāng)x≤-a2時(shí),f(x)=x+2a2,
-a2≤x≤0時(shí),f(x)=-x,
圖象如圖:易得其圖象與x軸交點(diǎn)為M(-2a2,0),N(2a2,0)
因此f(x)在[-a2,a2]是減函數(shù),其余區(qū)間是增函數(shù).
f(x)為R上的4高夢(mèng)想函數(shù),則對(duì)任意x,有f(x+4)≥f(x),
故當(dāng)-2a2≤x≤0時(shí),f(x)≥0,為保證f(x+4)≥f(x),必有f(x+4)≥0;即x+4≥2a2;
有-2a2≤x≤0且x+4≥2a2可得4≥4a2
解可得:-1≤a≤1;
故選A..
點(diǎn)評(píng):考查學(xué)生的閱讀能力,很應(yīng)用知識(shí)分析解決問(wèn)題的能力,考查數(shù)形結(jié)合的能力,用圖解決問(wèn)題的能力,屬中檔題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(1,2),
b
=(1,0),
c
=(3,4),若λ為實(shí)數(shù),(
b
a
)⊥
c
,則λ的值為(  )
A、-
3
11
B、-
11
3
C、
1
2
D、
3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin(x-
π
6
)+cos(x-
π
3
),g(x)=2cos2
x
2

(1)若θ是第一象限角,且f(θ)=
3
3
5
.求g(θ)的值;
(2)求使f(x)≥g(x)成立的x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校為了了解1500名學(xué)生對(duì)學(xué)校食堂的意見(jiàn),從中抽取1個(gè)容量為50的樣本,采用系統(tǒng)抽樣法,則分段間隔為(  )
A、10B、15C、20D、30

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知[x]表示不超過(guò)實(shí)數(shù)x的最大整數(shù),例如[1.3]=1,[-2.6]=-3,g(x)=[x]為取整函數(shù),已知x0是函數(shù)f(x)=lnx-
2
x
 的零點(diǎn),則g(x0)等于( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)總體中有100個(gè)個(gè)體,隨機(jī)編號(hào)為0,1,2,…,99,依編號(hào)順序平均分10個(gè)小組,組號(hào)分別為1,2,…,10,現(xiàn)采用系統(tǒng)抽樣方法抽取一個(gè)容量為10的樣本,規(guī)定如果在第一組中隨機(jī)取得的號(hào)碼為m,那么在第k組中抽取的號(hào)碼的個(gè)位數(shù)與m+k的個(gè)位數(shù)相同,若m=8,則在第6組中抽取的號(hào)碼為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列各式中,值為0.5是( 。
A、sin15°cos15°
B、
tan22.5°
1-tan222.5°
C、cos2
π
12
sin2
π
12
D、
1
2
+
1
2
cos
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=sinx+cosx,x∈R.
(Ⅰ)求函數(shù)f(x)的最小正周期、最大值和最小值;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M={x|x2+4x+p=0,x∈R},N={x|x>0},若M∩N=∅,求實(shí)數(shù)p的取值集合.

查看答案和解析>>

同步練習(xí)冊(cè)答案