已知拋物線(xiàn)的焦點(diǎn)為,過(guò)焦點(diǎn)且不平行于軸的動(dòng)直線(xiàn)交拋物線(xiàn)于,兩點(diǎn),拋物線(xiàn)在兩點(diǎn)處的切線(xiàn)交于點(diǎn)

(Ⅰ)求證:,,三點(diǎn)的橫坐標(biāo)成等差數(shù)列;
(Ⅱ)設(shè)直線(xiàn)交該拋物線(xiàn)于,兩點(diǎn),求四邊形面積的最小值.
(Ⅰ)由已知,得,顯然直線(xiàn)的斜率存在且不為0,
則可設(shè)直線(xiàn)的方程為),,,
消去,得,顯然.
所以. ………………………………………………2分
,得,所以,
所以,直線(xiàn)的斜率為,
所以,直線(xiàn)的方程為,又,
所以,直線(xiàn)的方程為 ①.………………………………4分
同理,直線(xiàn)的方程為 ②.………………………………5分
②-①并據(jù)得點(diǎn)M的橫坐標(biāo),
,三點(diǎn)的橫坐標(biāo)成等差數(shù)列.  ……………………7分
(Ⅱ)由①②易得y=-1,所以點(diǎn)M的坐標(biāo)為(2k,-1)().
所以,
則直線(xiàn)MF的方程為,   …………………………………………8分
設(shè)C(x3,y3),D(x4,y4)
消去,得,顯然,
所以.    …………………………………………9分

.…………10分

.……………12分
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211148555676.png" style="vertical-align:middle;" />,所以 ,    
所以,,
當(dāng)且僅當(dāng)時(shí),四邊形面積的取到最小值.……………………14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12)設(shè)焦點(diǎn)在軸上的雙曲線(xiàn)漸近線(xiàn)方程為,且離心率為2,已知點(diǎn)A(
(1)求雙曲線(xiàn)的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)A的直線(xiàn)L交雙曲線(xiàn)于M,N兩點(diǎn),點(diǎn)A為線(xiàn)段MN的中點(diǎn),求直線(xiàn)L方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

雙曲線(xiàn)的實(shí)軸長(zhǎng)是                         
A.2B.2C.4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知F1、F2是雙曲線(xiàn)的兩個(gè)焦點(diǎn),PQ是過(guò)點(diǎn)F1的弦,且PQ的傾斜角為,那么|PF2|+|QF2|-|PQ|的值為(   )
A.16B.12C.8D.隨大小變化

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

直線(xiàn)過(guò)雙曲線(xiàn)的右焦點(diǎn)且與雙曲線(xiàn)的兩條漸近線(xiàn)分別交于,兩點(diǎn),若原點(diǎn)在以為直徑的圓外,則雙曲線(xiàn)離心率的取值范圍是    (    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知雙曲線(xiàn)C:
(1) 若與C有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)k的取值范圍;
(2) 若與C交于A,B兩點(diǎn),O是坐標(biāo)原點(diǎn),且求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

.已知方程:表示焦距為8的雙曲線(xiàn),則m的值等于
A.-30B.10C.-6或10D.-30或34

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

雙曲線(xiàn)mx2+ y2=1的虛軸長(zhǎng)是實(shí)軸長(zhǎng)的2倍,則m等于             (    )
A.-B.-4C.4D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)雙曲線(xiàn)的漸近線(xiàn)方程為的值為(   )
A.4B.3 C.2D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案