2.已知函數(shù)f(x)=Acos(ωx-$\frac{π}{3}$)(A>0,ω>0)相鄰兩條對(duì)稱軸相距$\frac{π}{2}$,且f(0)=1.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)設(shè)α、β∈(0,$\frac{π}{4}$),f(α-$\frac{π}{3}$)=$\frac{10}{13}$,f(β+$\frac{π}{6}$)=$\frac{6}{5}$,求tan(2α-2β)的值.

分析 (Ⅰ)利用余弦函數(shù)的周期性求得ω,由f(0)=1,求得A,可得函數(shù)的解析式.
(Ⅱ)由條件利用同角三角函數(shù)的基本關(guān)系、誘導(dǎo)公式、二倍角公式,求得tan2α、tan2β的值,再利用兩角差的正切公式求得tan(2α-2β)的值.

解答 解:(Ⅰ)∵函數(shù)f(x)=Acos(ωx-$\frac{π}{3}$)(A>0,ω>0)相鄰兩條對(duì)稱軸相距$\frac{T}{2}$=$\frac{π}{ω}$=$\frac{π}{2}$,∴ω=2;
又f(0)=$\frac{1}{2}$A=1,∴A=2,∴f(x)=2cos(2x-$\frac{π}{3}$).
(Ⅱ)∵α、β∈(0,$\frac{π}{4}$),f(α-$\frac{π}{3}$)=2cos[2(α-$\frac{π}{3}$)-$\frac{π}{3}$]=2cos(2α-π)=-2cos2α=$\frac{10}{13}$,
∴cos2α=$\frac{5}{13}$,sin2α=$\sqrt{{1-cos}^{2}2α}$=$\frac{12}{13}$,tan2α=$\frac{sin2α}{cos2α}$=$\frac{12}{5}$.
f(β+$\frac{π}{6}$)=2cos[2(β+$\frac{π}{6}$)-$\frac{π}{3}$]=2cos2β=$\frac{6}{5}$,∴cos2β=$\frac{3}{5}$,sin2β=$\sqrt{{1-cos}^{2}2β}$=$\frac{4}{5}$,tan2β=$\frac{sin2β}{cos2β}$=$\frac{4}{3}$.
求tan(2α-2β)=$\frac{tan2α-tan2β}{1+tan2α•tan2β}$=$\frac{\frac{12}{5}-\frac{4}{3}}{1+\frac{12}{5}•\frac{4}{3}}$=$\frac{16}{63}$.

點(diǎn)評(píng) 本題主要考查余弦函數(shù)的周期性,同角三角函數(shù)的基本關(guān)系,二倍角公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.我們把滿足:${x_{n+1}}={x_n}-\frac{{f({x_n})}}{{f'({x_n})}}$的數(shù)列{xn}叫做牛頓數(shù)列.已知函數(shù)f(x)=x2-1,數(shù)列{xn}為牛頓數(shù)列,設(shè)${a_n}=ln\frac{{{x_n}-1}}{{{x_n}+1}}$,已知a1=2,則a3=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若等差數(shù)列{an}的前n項(xiàng)和Sn滿足S4=4,S6=12,則S2=(  )
A.-1B.0C.1D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知圓O:x2+y2=1和拋物線E:y=x2-2,O為坐標(biāo)原點(diǎn).
(1)已知直線l和圓O相切,與拋物線E交于M,N兩點(diǎn),且滿足OM⊥ON,求直線l的方程;
(2)過(guò)拋物線E上一點(diǎn)P(x0,y0)作兩直線PQ,PR和圓O相切,且分別交拋物線E于Q,R兩點(diǎn),若直線QR的斜率為$-\sqrt{3}$,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.某幾何體的三視圖如圖所示(網(wǎng)絡(luò)中每個(gè)小正方形的邊長(zhǎng)為1),若這個(gè)幾何體的頂點(diǎn)都在球O的表面上,則這個(gè)球的表面積是(  )
A.20πB.4$\sqrt{5}$πC.$\frac{49π}{16}$D.$\frac{49π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)函數(shù)f(x)=|x-2|-|2x+1|.
(Ⅰ)求不等式f(x)>0的解集;
(Ⅱ)若存在x0∈R,使得f(x0)>2m+1,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知橢圓C的兩個(gè)焦點(diǎn)坐標(biāo)分別是(-2,0),(2,0),并且經(jīng)過(guò)$P({\sqrt{3},1})$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過(guò)橢圓C的右焦點(diǎn)F作直線l,直線l與橢圓C相交于A、B兩點(diǎn),與圓O:x2+y2=6相交于D、E兩點(diǎn),當(dāng)△OAB的面積最大時(shí),求弦DE的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若z=(a-1)+ai為純虛數(shù),其中a∈R,則$\frac{a+{i}^{7}}{1+ai}$=( 。
A.-iB.iC.1+iD.1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若將函數(shù)y=3cos(2x+$\frac{π}{2}$)的圖象向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度,則平移后圖象的一個(gè)對(duì)稱中心是(  )
A.($\frac{π}{6}$,0)B.(-$\frac{π}{6}$,0)C.($\frac{π}{12}$,0)D.(-$\frac{π}{12}$,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案