分析 (1)將a的值代入f(x),求出函數(shù)的導數(shù),解關(guān)于導函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;
(2)求出函數(shù)的導數(shù),問題轉(zhuǎn)化為(x-2)(x+a)≥0在(2,+∞)上恒成立,求出a的范圍即可.
解答 解:(1)a=-1時,f(x)=$\frac{1}{2}$x2+2lnx-3x,
f′(x)=$\frac{(x-2)(x-1)}{x}$,
令f′(x)>0,解得:x>2或x<1,
令f′(x)<0,解得:1<x<2,
∴f(x)在(0,1)遞增,在(1,2)遞減,在(2,+∞)遞增;
(2)∵f(x)=$\frac{1}{2}$x2-2alnx+(a-2)x,a∈R,
∴f′(x)=x-$\frac{2a}{x}$+a-2=$\frac{(x-2)(x+a)}{x}$(x>0),
由題意知f′(x)≥0在(2,+∞)上恒成立,
即 (x-2)(x+a)≥0在(2,+∞)上恒成立
解得 a≥-2,
∴a的取值范圍是[-2,+∞).
點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導數(shù)的應用以及導數(shù)的應用,是一道中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | ①④ | B. | ①② | C. | ②④ | D. | ③④ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|1<x<3} | B. | {x|1≤x<3} | C. | {x|1<x≤3} | D. | {x|1≤x≤3} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {2} | B. | {2,3} | C. | {3} | D. | {2,3,4} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{8}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{2}$ | D. | $\frac{3π}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com