8.已知$\overrightarrow a=(cosα,sinα),\overrightarrow b=(cos(-α),sin(-α))$,那么$\overrightarrow a•\overrightarrow b=0$是α=kπ+$\frac{π}{4}$(k∈Z)的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 由$\overrightarrow a•\overrightarrow b=0$,可得cos2α=0,解出即可判斷出結(jié)論.

解答 解:∵$\overrightarrow a•\overrightarrow b=0$=cosα•cos(-α)+sinα•sin(-α)=cos2α-sin2α=cos2α.
∴2α=$2kπ±\frac{π}{2}$,解得α=kπ±$\frac{π}{4}$(k∈Z).
∴$\overrightarrow a•\overrightarrow b=0$是α=kπ+$\frac{π}{4}$(k∈Z)的必要不充分條件.
故選:B.

點(diǎn)評(píng) 本題考查了向量數(shù)量積運(yùn)算性質(zhì)、三角函數(shù)求值、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.用線性回歸模型求得甲、乙、丙3組不同的數(shù)據(jù)對(duì)應(yīng)的R2的值分別為0.81,0.98,0.63,其中乙(填甲、乙、丙中的一個(gè))組數(shù)據(jù)的線性回歸的效果最好.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知直線l1:(2sinθ-1)x+2cosθ•y+1=0,l2:x+$\sqrt{3}$y-3=0,若l1⊥l2,則$cos(θ-\frac{π}{6})$的值為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知各項(xiàng)不為零的數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,Sn=panan+1(n∈N*),p∈R.
(1)若a1,a2,a3成等比數(shù)列,求實(shí)數(shù)p的值;
(2)若a1,a2,a3成等差數(shù)列,
①求數(shù)列{an}的通項(xiàng)公式;
②在an與an+1間插入n個(gè)正數(shù),共同組成公比為qn的等比數(shù)列,若不等式(qn(n+1)(n+a)≤e對(duì)任意的n∈N*恒成立,求實(shí)數(shù)a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.為備戰(zhàn)2018年瑞典乒乓球世界錦標(biāo)賽,乒乓球隊(duì)舉行公開(kāi)選撥賽,甲、乙、丙三名選手入圍最終單打比賽名單.現(xiàn)甲、乙、丙三人進(jìn)行隊(duì)內(nèi)單打?qū)贡荣,每(jī)扇吮荣愐粓?chǎng),共賽三場(chǎng),每場(chǎng)比賽勝者得3分,負(fù)者得0分,在每一場(chǎng)比賽中,甲勝乙的概率為$\frac{3}{5}$,丙勝甲的概率為$\frac{3}{4}$,乙勝丙的概率為p,且各場(chǎng)比賽結(jié)果互不影響.若甲獲第一名且乙獲第三名的概率為$\frac{1}{10}$.
(Ⅰ)求p的值;
(Ⅱ)設(shè)在該次對(duì)抗比賽中,丙得分為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知數(shù)列{an}滿足$\frac{a_1}{2}+\frac{a_2}{2^2}+\frac{a_3}{2^3}+…+\frac{a_n}{2^n}={n^2}$+n.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn=$\frac{{{{(-1)}^n}{a_n}}}{2}$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知拋物線的方程為x2=2py(p>0),過(guò)點(diǎn)A(0,-a)(a>0)作直線l與拋物線相交于P,Q兩點(diǎn),點(diǎn)B的坐標(biāo)為(0,a),連接BP,BQ.且QB,QP與x軸分別交于M,N兩點(diǎn),如果QB的斜率與PB的斜率之積為-3,則∠PBQ=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.將3枚均勻的硬幣各拋擲一次,恰有1枚正面朝上的概率為( 。
A.$\frac{1}{8}$B.$\frac{1}{3}$C.$\frac{3}{8}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.根據(jù)如下樣本數(shù)據(jù)
x234567
y4.12.5-0.50.5-2.0-3.0
得到的回歸方程為$\widehaty=\hat bx+\hat a$,則( 。
A.$\hat a>0,\hat b>0$B.$\hat a>0,\hat b<0$C.$\hat a<0,\hat b>0$D.$\hat a<0,\hat b<0$

查看答案和解析>>

同步練習(xí)冊(cè)答案