4.4張卡片上分別寫有數(shù)字1,2,3,4,從這4張卡片中隨機(jī)抽取2張,則取出的2張卡片上的數(shù)字之和為奇數(shù)的所有基本事件數(shù)為( 。
A.2B.3C.4D.6

分析 從從這4張卡片中隨機(jī)抽取2張卡片,取出的2張卡片上的數(shù)字之和為奇數(shù)包括的結(jié)果,可以通過列舉得到.

解答 解:由題意知,從從這4張卡片中隨機(jī)抽取2張卡片,
取出的2張卡片上的數(shù)字之和為奇數(shù)包括(1,2),(1,4),(2,3),(3,4);
共有四種結(jié)果,
故選C.

點(diǎn)評(píng) 本題考查排列組合的實(shí)際問題,這是一個(gè)最簡(jiǎn)單的組合數(shù)問題,在解題時(shí),注意這里是一次抽取兩張,不用考慮順序.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若$tan({\frac{π}{2}-α})=2$,則$\frac{sinα-cosα}{2sinα+cosα}$=-$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知圓O:x2+y2=1與直線l:ax+by+2=0相切,則動(dòng)點(diǎn)P(2a,3b)在直角坐標(biāo)平面xoy內(nèi)的軌跡方程為$\frac{x^2}{16}+\frac{y^2}{36}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知向量$\overrightarrow{a}$=(3,2),$\overrightarrow$=(-1,2),且$\overrightarrow{a}$$•\overrightarrow{c}$=$\overrightarrow$$•\overrightarrow{c}$>0,|$\overrightarrow{c}$|=3.
(Ⅰ)求向量$\overrightarrow{c}$的坐標(biāo);
(Ⅱ)求|3$\overrightarrow{a}$-$\overrightarrow{c}$|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知a∈R,直線l1:(2a+1)x+2y-a+2=0與直線l2:2x-3ay-3a-5=0垂直.
(1)求a的值;
(2)求以l1,l2的交點(diǎn)為圓心,且與直線3x-4y+9=0相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.△ABC的三邊長(zhǎng)a,b,c和面積S滿足S=$\frac{1}{2}$[c2-(a-b)2],若c=2,且2sinAcosC=sinB,則b的值為( 。
A.$\frac{15}{4}$B.$\frac{13}{4}$C.$\frac{12}{5}$D.$\frac{13}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知數(shù)列{an}滿足a1=$\frac{1}{3}$,an+1=$\frac{{a}_{n}}{2{a}_{n}+1}$(n∈N*),則$\frac{{a}_{3}+{a}_{1005}}{{a}_{3}{a}_{1005}}$=( 。
A.2015B.2016C.2017D.2018

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知$\overrightarrow{a}$=(sin(2x-$\frac{π}{3}$),1),$\overrightarrow$=($\sqrt{3}$,-1),f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(1)求f(x)的周期及單調(diào)減區(qū)間.
(2)已知x∈[0,$\frac{π}{2}$],求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知f(x)=asinx,g(x)=lnx,其中a∈R,y=g-1(x)是y=g(x)的反函數(shù).
(1)若0<a≤1,證明:函數(shù)G(x)=f(1-x)+g(x)在區(qū)間(0,1)上是增函數(shù);
(2)證明:$\sum_{i=1}^{n}$sin$\frac{1}{(1+k)^{2}}$<ln2;
(3)設(shè)F(x)=g-1(x)-mx2-2(x+1)+b,若對(duì)任意的x>0,m<0有F(x)>0恒成立,求滿足條件的最小整數(shù)b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案