18.設(shè)等差數(shù)列 {an} 的前 n 項和為 Sn,已知 ${({a}_{7}-1)}^{3}+2017({a}_{7}-1)=1$,${({a}_{2011}-1)}^{3}+2017({a}_{2011}-1)=-1$,則下列結(jié)論正確的是(  )
A.S2017=2017,a2011<a7B.S2017=2017,a2017>a7
C.S2012=-2017,a2017<a7D.S2017=-2017,a2017>a7

分析 根據(jù)等式,構(gòu)造函數(shù),求導(dǎo)函數(shù),可知函數(shù)是單調(diào)遞增的,再利用函數(shù)的單調(diào)性即等差數(shù)列的求和公式,即可得到結(jié)論.

解答 解:根據(jù)(a7-1)3+2017(a7-1)=1,(a2011-1)3+2017(a2011-1)=-1,
構(gòu)造函數(shù)f(x)=x3+2017x,由于函數(shù)f(x)=x3+2017x是奇函數(shù),
由條件有f(a7-1)=1,f(a2011-1)=-1.
求導(dǎo)函數(shù)可得:f′(x)=3x2+2017>0,所以函數(shù)f(x)=x3+2017x是單調(diào)遞增的,
而f(1)=2018>1=f(a7-1),即a7-1<1,解得:a7<2.
∵f(a7-1)=1,f(a2011-1)=-1,∴a7-1>a2011-1,a7-1=-(a2011-1),
∴a7>0>a2011,a7+a2011=2,
由等差數(shù)列的性質(zhì)可知:a1+a2017=a7+a2011=2
∴S2017=$\frac{({a}_{1}+{a}_{2017})×2017}{2}$=2017.
綜上知,S2017=2017,且a2011<a7
故選A.

點評 本題考查函數(shù)與方程的思想,綜合考查函數(shù)的奇偶性、單調(diào)性、等差數(shù)列的通項公式、等差數(shù)列性質(zhì)、等差數(shù)列求和公式以及函數(shù)與方程的思想,轉(zhuǎn)化與化歸思想,屬于難題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{1}{2}$,過右焦點且垂直于x軸的直線被橢圓所截得的弦長為3.
(1)求橢圓C的方程;
(2)A,B兩點分別為橢圓C的左右頂點,P為橢圓上異于A,B的一點,記直線PA,PB的斜率分別為kPA,kPB,求kPA•kPB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)f(x)=x2-4ax+alnx(a∈R)
(1)討論f(x)的極值點的個數(shù)
(2)若f(x)有兩個不同的極值點x1,x2,證明:f(x1)+f(x2)<-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在平行四邊形ABCD中,$\stackrel{→}{AB}$+$\stackrel{→}{BC}$=( 。
A.$\stackrel{→}{AC}$B.$\stackrel{→}{BD}$C.$\stackrel{→}{CA}$D.$\stackrel{→}{DB}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)$f(x)=\frac{mx-6}{{{x^2}+n}}$的圖象在點P(-1,f(-1))處的切線方程為x+2y+5=0,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=2x+1定義在R上.
(1)若f(x)可以表示為一個偶函數(shù)g(x)與一個奇函數(shù)h(x)之和,設(shè)h(x)=t,p(t)=g(2x)+2mh(x)+m2-m-1(m∈R),求出p(t)的解析式;
(2)若p(t)≥m2-m-1對于x∈[1,2]恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知f1(x)=sin x+cos x,記f2(x)=f1′(x),f3(x)=f2′(x),…,fn(x)=fn-1′(x)(n∈N*,n≥2),則f1($\frac{π}{2}$)+f2($\frac{π}{2}$)+…+f2017($\frac{π}{2}$)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)函數(shù)f(x)=2sin(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$)的圖象關(guān)于直線$x=\frac{2π}{3}$對稱,它的周期為π,則下列說法正確是③.(填寫序號)
①f(x)的圖象過點$({0,\frac{3}{2}})$;
②f(x)在$[{\frac{π}{12},\frac{2π}{3}}]$上單調(diào)遞減;
③f(x)的一個對稱中心是$({\frac{5π}{12},0})$;
④將f(x)的圖象向右平移|φ|個單位長度得到函數(shù)y=2sinωx的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.等比數(shù)列{an}中,a4a8=9,則a3+a9的取值范圍是( 。
A.[6,+∞)B.(-∞,-6]∪[6,+∞)C.(6,+∞)D.(-6,6)

查看答案和解析>>

同步練習(xí)冊答案