A. | S2017=2017,a2011<a7 | B. | S2017=2017,a2017>a7 | ||
C. | S2012=-2017,a2017<a7 | D. | S2017=-2017,a2017>a7 |
分析 根據(jù)等式,構(gòu)造函數(shù),求導(dǎo)函數(shù),可知函數(shù)是單調(diào)遞增的,再利用函數(shù)的單調(diào)性即等差數(shù)列的求和公式,即可得到結(jié)論.
解答 解:根據(jù)(a7-1)3+2017(a7-1)=1,(a2011-1)3+2017(a2011-1)=-1,
構(gòu)造函數(shù)f(x)=x3+2017x,由于函數(shù)f(x)=x3+2017x是奇函數(shù),
由條件有f(a7-1)=1,f(a2011-1)=-1.
求導(dǎo)函數(shù)可得:f′(x)=3x2+2017>0,所以函數(shù)f(x)=x3+2017x是單調(diào)遞增的,
而f(1)=2018>1=f(a7-1),即a7-1<1,解得:a7<2.
∵f(a7-1)=1,f(a2011-1)=-1,∴a7-1>a2011-1,a7-1=-(a2011-1),
∴a7>0>a2011,a7+a2011=2,
由等差數(shù)列的性質(zhì)可知:a1+a2017=a7+a2011=2
∴S2017=$\frac{({a}_{1}+{a}_{2017})×2017}{2}$=2017.
綜上知,S2017=2017,且a2011<a7 ,
故選A.
點評 本題考查函數(shù)與方程的思想,綜合考查函數(shù)的奇偶性、單調(diào)性、等差數(shù)列的通項公式、等差數(shù)列性質(zhì)、等差數(shù)列求和公式以及函數(shù)與方程的思想,轉(zhuǎn)化與化歸思想,屬于難題
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\stackrel{→}{AC}$ | B. | $\stackrel{→}{BD}$ | C. | $\stackrel{→}{CA}$ | D. | $\stackrel{→}{DB}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [6,+∞) | B. | (-∞,-6]∪[6,+∞) | C. | (6,+∞) | D. | (-6,6) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com