已知定義在區(qū)間上的函數(shù)y=f(x)的圖象關(guān)于直線x=-對稱,當x∈時,函數(shù)f(x)=Asin(ωx+φ) 的圖象如圖所示.
(1)求函數(shù)y=f(x)在上的表達式;
(2)求方程f(x)=的解.
(1)
(2)x=-或-或-或.
解析試題分析:解:(1)當x∈時,A=1,=-,T=2π,ω=1.
且f(x)=sin(x+φ)過點,
則+φ=π,φ=.
f(x)=sin.
當-π≤x<-時,-≤-x-≤,
f=sin,
而函數(shù)y=f(x)的圖象關(guān)于直線x=-對稱,
則f(x)=f,
即f(x)=sin=-sin x,-π≤x<-.
∴
(2)當-≤x≤時,≤x+≤π,
由f(x)=sin=,
得x+=或,x=-或.
當-π≤x<-時,由f(x)=-sin x=,sin x=-,
得x=-或-.
∴x=-或-或-或.
考點:三角函數(shù)的圖像與解析式
點評:解決的關(guān)鍵是根據(jù)三角函數(shù)的性質(zhì)來結(jié)合圖像來得到參數(shù)的求解,同事解三角方程,屬于基礎(chǔ)題。
科目:高中數(shù)學(xué) 來源: 題型:解答題
函數(shù)的最小值是,在一個周期內(nèi)圖象最高點與最低點橫坐標差是,又:圖象過點,
求(1)函數(shù)解析式,
(2)函數(shù)的最大值、以及達到最大值時的集合;
(3)該函數(shù)圖象可由的圖象經(jīng)過怎樣的平移和伸縮得到?
(4)當時,函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)其中,
(I)若求的值;
(Ⅱ)在(I)的條件下,若函數(shù)的圖像的相鄰兩條對稱軸之間的距離等于,求函數(shù)的解析式;并求最小正實數(shù),使得函數(shù)的圖像象左平移個單位所對應(yīng)的函數(shù)是偶函數(shù)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)
已知函數(shù),其中請分別解答以下兩小題.
(Ⅰ)若函數(shù)過點,求函數(shù)的解析式.
(Ⅱ)如圖,點分別是函數(shù)的圖像在軸兩側(cè)與軸的兩個相鄰交點, 函數(shù)圖像上的一點,若滿足,求函數(shù)的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com