已知函數(shù)f(x)=x2+ax-lnx,a∈R.
(Ⅰ)當(dāng)a=1時(shí),求f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)函數(shù)f(x)在[1,2]上是減函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅲ)令g(x)=f(x)-x2,是否存在實(shí)數(shù)a,當(dāng)x∈(0,e](e是自然對(duì)數(shù)的底數(shù)時(shí),函數(shù)g(x)的最小值是3,若存在,求出a的值;若不存在,說(shuō)明理由.
考點(diǎn):利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專(zhuān)題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(Ⅰ)由f(x)=x2+x-lnx,x>0,得f′(x)=
(2x-1)(x+1)
x
,從而f(x)在(0,
1
2
)遞減,在(
1
2
,+∞)遞增;
(Ⅱ)由f′(x)=
2x2+ax-1
x
,當(dāng)函數(shù)f(x)在[1,2]上是減函數(shù)時(shí),得f′(1)=2+a-1≤0①,f′(2)≤0得a范圍是(-∞,
7
2
);
(Ⅲ)∵f(x)=x2+ax-lnx,求出函數(shù)的導(dǎo)數(shù),討論a≤0,0<
1
a
<e,
1
a
≥e的情況,從而得出答案.
解答: 解:(Ⅰ)a=1時(shí),f(x)=x2+x-lnx,x>0
∴f′(x)=
(2x-1)(x+1)
x
,
令f′(x)>0,解得:x>
1
2
,x<-1(舍),
令f′(x)<0,解得:0<x<
1
2

∴f(x)在(0,
1
2
)遞減,在(
1
2
,+∞)遞增;
(Ⅱ)∵f′(x)=
2x2+ax-1
x
,
當(dāng)函數(shù)f(x)在[1,2]上是減函數(shù)時(shí),
得f′(1)=2+a-1≤0①,
f′(2)=8+2a-1≤0②,
由①②得:a≤-
7
2

∴a的范圍是(-∞,
7
2
);
(Ⅲ)∵f(x)=x2+ax-lnx,
∴g(x)=f(x)-x2=ax-lnx,x∈(0,e].
∴g′(x)=a-
1
x
=
ax-1
x
(0<x≤e),
①當(dāng)a≤0時(shí),g(x)在(0,e]上單調(diào)遞減,g(x)min=g(e)=ae-1=3,解得a=
4
e
(舍去);
②當(dāng)0<
1
a
<e時(shí),g(x)在(0,
1
a
)上單調(diào)遞減,在(
1
a
,e]上單調(diào)遞增,
∴g(x)min=g(
1
a
)=1+lna=3,解得a=e2,滿(mǎn)足條件;
③當(dāng)
1
a
≥e時(shí),g(x)在(0,e]上單調(diào)遞減,g(x)min=g(e)=ae-1=3,解得a=
4
e
(舍去);
綜上,存在實(shí)數(shù)a=e2,使得當(dāng)x∈(0,e]時(shí),g(x)有最小值3.
點(diǎn)評(píng):本題考查了函數(shù)的單調(diào)性,函數(shù)的最值問(wèn)題,導(dǎo)數(shù)的應(yīng)用,考查分類(lèi)討論思想,是一道綜合題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x+
a
x
(x>0,a>0)在x=2處取得最小值,則a的值為(  )
A、8
B、4
C、
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)為偶函數(shù),f(2)+f(-5)=4,求f(-2)+f(5)=( 。
A、4B、-4C、2D、-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求矩陣A=
3 4
1 2
的逆矩陣.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若方程
x+2
+k=x有兩個(gè)根,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知矩陣M=(
10
0-1
),N=(
12
34
).
(Ⅰ)求使得MX=N成立的二階矩陣X;
(Ⅱ)求矩陣X的特征值以及每個(gè)特征值所對(duì)應(yīng)的一個(gè)特征向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A、B、C是△ABC的三內(nèi)角,向量
m
=(-1,
3
),
n
=(cosA,sinA),且
m
n
=1,
1+sin2B
cos2B-sin2B
=-3,求cosC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某公司今年年初用36萬(wàn)元引進(jìn)一種新的設(shè)備,投入設(shè)備后每年收益為21萬(wàn)元.同時(shí),公司每年需要付出設(shè)備的維修和工人工資等費(fèi)用,第一年各種費(fèi)用2萬(wàn)元,第二年各種費(fèi)用4萬(wàn)元,以后每年各種費(fèi)用都增加2萬(wàn)元.
(1)引進(jìn)這種設(shè)備后,第幾年后該公司開(kāi)始獲利;
(2)這種設(shè)備使用多少年,該公司的年平均獲利最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(
x
+
2
x2
n的展開(kāi)式中,第5項(xiàng)的系數(shù)與第3項(xiàng)的系數(shù)之比是10:1,求展開(kāi)式中:
(1)含x-1的項(xiàng);
(2)系數(shù)最大的項(xiàng).

查看答案和解析>>

同步練習(xí)冊(cè)答案