已知函數(shù)y=
1
|x+2|
-1,求函數(shù)的定義域.
考點:函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應用
分析:由分母不為0,解出x≠-2,從而求出函數(shù)的定義域.
解答: 解:∵|x+2|≠0,
∴x≠-2,
∴函數(shù)的定義域為:{x|x≠-2}.
點評:本題考查了函數(shù)的定義域問題,是一道基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知集合A={1,2,4},B={2,4,6},則A∪B=( 。
A、{1,2,4}
B、{2,4}
C、{1,2,2,4,4,6}
D、{1,2,4,6}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=
ax
ax+
a
,其中a>0,a≠1,
(1)求證:函數(shù)f(x)的圖象關于點(
1
2
1
2
)中心對稱;
(2)求f(
1
10
)+f(
2
10
)+f(
3
10
)+…+f(
9
10
)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=2x+
a
2x
-1(a為實數(shù)).
(Ⅰ)當a=0時,求方程|f(x)|=1的根;
(Ⅱ)當a=-1時,
①若對于任意t∈(1,4],不等式f(t2-2t)-f(2t2-k)>0恒成立,求k的范圍;
②設函數(shù)g(x)=2x+b,若對任意的x1∈[0,1],總存在著x2∈[0,1],使得f(x1)=g(x2),求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設定義在R上的函數(shù)f(x)對于任意x、y都有f(x+y)=f(x)+f(y)成立,且f(1)=-2,當x>0時,f(x)<0.(1)判斷并證明函數(shù)f(x)的奇偶性;
(2)判斷并證明f(x)在R上的單調(diào)性;
(3)當x∈[-2014,2014],求函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等差數(shù)列{an}的前n項之和為Sn,若a1=1,且
S2015
2015
-
S2013
2013
=2,
(1)求an;   
(2)求證:
1
a1
+
1
a2
+
1
a3
+…+
1
an
>2(
2n
-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的通項公式為an=
3n
n+1

(1)求數(shù)列{an}的第3項、第10項、第100項;
(2)判斷
20
7
25
8
是否為數(shù)列{an}中的項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1=
7
3
,an+1=3an-4n+2(n∈N*
(1)求a2,a3的值;
(2)證明數(shù)列{an-2n}是等比數(shù)列,并求出數(shù)列{an}的通項公式;
(3)若數(shù)列{bn}滿足
1+2bn
bn
=
an
n
(n∈N*),求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=alnx-
1
4
x+
3a2
4x
-1.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若a=1,設g(x)=-x2+2bx-4,且滿足對任意x1∈(0,2),x2∈[1,2],不等式f(x1)≥f(x2) 恒成立,求實數(shù)b的取值范圍.

查看答案和解析>>

同步練習冊答案