【題目】已知圓軸負(fù)半軸相交于點(diǎn),與軸正半軸相交于點(diǎn).

1)若過點(diǎn)的直線被圓截得的弦長為,求直線的方程;

2)若在以為圓心,半徑為的圓上存在點(diǎn),使得為坐標(biāo)原點(diǎn)),求的取值范圍.

【答案】1.2

【解析】

1)當(dāng)直線的斜率不存在時(shí),求得的方程為:,符合題意;當(dāng)直線的斜率存在時(shí),設(shè)的方程,求出點(diǎn)到直線的距離,利用垂徑定理列式求得,則直線方程可求;

2)設(shè)點(diǎn)的坐標(biāo)為,求出點(diǎn)與點(diǎn)的坐標(biāo),再由,可得,由點(diǎn)在圓上,得,求解得答案.

1)當(dāng)直線的斜率不存在時(shí),則的方程為:,符合題意.

當(dāng)直線的斜率存在時(shí),設(shè)的方程為:,即,

∴點(diǎn)到直線的距離,

∵直線被圓截得的弦長為,∴,即,

,此時(shí)的方程為:,

∴所求直線的方程為.

2)設(shè)點(diǎn)的坐標(biāo)為,

由題得點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,

可得,

化簡可得

∵點(diǎn)在圓上,∴,

,

的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的參數(shù)方程為為參數(shù)),為曲線上的一動(dòng)點(diǎn).

(I)求動(dòng)點(diǎn)對(duì)應(yīng)的參數(shù)從變動(dòng)到時(shí),線段所掃過的圖形面積;

(Ⅱ)若直線與曲線的另一個(gè)交點(diǎn)為,是否存在點(diǎn),使得為線段的中點(diǎn)?若存在,求出點(diǎn)坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司代理銷售某種品牌小商品,該產(chǎn)品進(jìn)價(jià)為5元/件,銷售時(shí)還需交納品牌使用費(fèi)3元/件,售價(jià)為元/件,其中,且.根據(jù)市場調(diào)查,當(dāng),且時(shí),每月的銷售量(萬件)與成正比;當(dāng),且時(shí),每月的銷售量(萬件)與成反比.已知售價(jià)為15元/件時(shí),月銷售量為9萬件.

(1)求該公司的月利潤(萬件)與每件產(chǎn)品的售價(jià)(元)的函數(shù)關(guān)系式;

(2)當(dāng)每件產(chǎn)品的售價(jià)為多少元時(shí),該公司的月利潤最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為評(píng)估設(shè)備生產(chǎn)某種零件的性能,從設(shè)備生產(chǎn)該零件的流水線上隨機(jī)抽取100個(gè)零件為樣本,測(cè)量其直徑后,整理得到下表:

直徑/mm

58

59

61

62

63

64

65

件數(shù)

1

1

3

5

6

19

33

直徑/mm

66

67

68

69

70

71

73

合計(jì)

件數(shù)

18

4

4

2

1

2

1

100

經(jīng)計(jì)算,樣本的平均值,標(biāo)準(zhǔn)差,以頻率值作為概率的估計(jì)值.

(I)為評(píng)判一臺(tái)設(shè)備的性能,從該設(shè)備加工的零件中任意抽取一件,記其直徑為,并根據(jù)以下不等式進(jìn)行判定(表示相應(yīng)事件的概率):①;②;③.判定規(guī)則為:若同時(shí)滿足上述三個(gè)式子,則設(shè)備等級(jí)為甲;若僅滿足其中兩個(gè),則等級(jí)為乙;若僅滿足其中一個(gè),則等級(jí)為丙;若全部都不滿足,則等級(jí)為丁.試判斷設(shè)備的性能等級(jí).

(Ⅱ)將直徑尺寸在之外的零件認(rèn)定為是“次品”,將直徑尺寸在之外的零件認(rèn)定為“突變品”.從樣本的“次品”中隨意抽取兩件,求至少有一件“突變品”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在以,,,,為頂點(diǎn)的五面體中,平面平面,是邊長為的正三角形,直線與平面所成角為.

(I)求證:;

(Ⅱ)若,四邊形為平行四邊形,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】趙爽是我國古代數(shù)學(xué)家、天文學(xué)家大約在公元222年趙爽為《周碑算經(jīng)》一書作序時(shí),介紹了“勾股圓方圖”,亦稱“趙爽弦圖”(以弦為邊長得到的正方形是由4個(gè)全等的直角三角形再加上中間的一個(gè)小正方形組成的)類比“趙爽弦圖”,趙爽弦圖可類似地構(gòu)造如圖所示的圖形,它是由個(gè)3全等的等邊三角形與中間的一個(gè)小等邊三角形組成的一個(gè)大等邊三角形,設(shè)DF2AF,若在大等邊三角形中隨機(jī)取一點(diǎn),則此點(diǎn)取自小等邊三角形的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖①,利用斜二側(cè)畫法得到水平放置的的直觀圖,其中軸,軸.若,設(shè)的面積為,的面積為,記,執(zhí)行如圖②的框圖,則輸出的值

A. 12B. 10C. 9D. 6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠,兩條生產(chǎn)線生產(chǎn)同款產(chǎn)品,若產(chǎn)品按照一、二、三等級(jí)分類,則每件可分別獲利10元、8元、6元,現(xiàn)從生產(chǎn)線的產(chǎn)品中各隨機(jī)抽取100件進(jìn)行檢測(cè),結(jié)果統(tǒng)計(jì)如下圖:

(1)根據(jù)已知數(shù)據(jù),判斷是否有99%的把握認(rèn)為一等級(jí)產(chǎn)品與生產(chǎn)線有關(guān)?

(2)分別計(jì)算兩條生產(chǎn)線抽樣產(chǎn)品獲利的方差,以此作為判斷依據(jù),說明哪條生產(chǎn)線的獲利更穩(wěn)定?

(3)估計(jì)該廠產(chǎn)量為2000件產(chǎn)品時(shí)的利潤以及一等級(jí)產(chǎn)品的利潤.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中華人民共和國國旗是五星紅旗,旗面左上方綴著的五顆黃色五角星,四顆小五角星環(huán)拱于大星之右,象征中國共產(chǎn)黨領(lǐng)導(dǎo)下的革命人民大團(tuán)結(jié)和人民對(duì)黨的衷心擁護(hù).五角星可通過正五邊形連接對(duì)角線得到,且它具有一些優(yōu)美的特征,如且等于黃金分割比,現(xiàn)從正五邊形A1B1C1D1E1內(nèi)隨機(jī)取一點(diǎn),則此點(diǎn)取自正五邊形A2B2C2D2E2內(nèi)部的概率為()

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案