16.向量$\overrightarrow{a}$=(2,-1,3),$\overrightarrow$=(-4,2,x),若$\overrightarrow{a}$⊥$\overrightarrow$,則x=$\frac{10}{3}$;若$\overrightarrow{a}$與$\overrightarrow$夾角是銳角,則x 的取值范圍$(\frac{10}{3},+∞)$.

分析 ①由$\overrightarrow{a}$⊥$\overrightarrow$,可得$\overrightarrow{a}•\overrightarrow$=-8-2+3x=0,解得x.
②由$\overrightarrow{a}$與$\overrightarrow$夾角是銳角,可得$\overrightarrow{a}•\overrightarrow$=-8-2+3x>0,解得x范圍.若$\overrightarrow{a}∥\overrightarrow$,則$\overrightarrow{a}=λ\overrightarrow$,可得$\left\{\begin{array}{l}{2=-4λ}\\{-1=2λ}\\{3=xλ}\end{array}\right.$,解得x,進(jìn)而得出范圍.

解答 解:①∵$\overrightarrow{a}$⊥$\overrightarrow$,則$\overrightarrow{a}•\overrightarrow$=-8-2+3x=0,解得x=$\frac{10}{3}$.
②∵$\overrightarrow{a}$與$\overrightarrow$夾角是銳角,∴$\overrightarrow{a}•\overrightarrow$=-8-2+3x>0,解得x>$\frac{10}{3}$.
若$\overrightarrow{a}∥\overrightarrow$,則$\overrightarrow{a}=λ\overrightarrow$,∴$\left\{\begin{array}{l}{2=-4λ}\\{-1=2λ}\\{3=xλ}\end{array}\right.$,解得x=-6<$\frac{10}{3}$.
∴$\overrightarrow{a}$與$\overrightarrow$夾角是銳角,則x 的取值范圍是$(\frac{10}{3},+∞)$.
故答案為:$\frac{10}{3}$;$(\frac{10}{3},+∞)$.

點(diǎn)評 本題考查了向量數(shù)量積運(yùn)算性質(zhì)、向量夾角公式、向量共線定理,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知球的直徑SC=4,AB是該球球面上兩點(diǎn),AB=2,∠ASC=∠BSC=30°,則棱錐S-ABC的體積為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)P={x|x<4},Q={x|x2<4},則( 。
A.P⊆QB.Q⊆PC.P∈QD.Q∈P

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在長方體ABCD-A1B1C1D1中,AB=2$\sqrt{3}$,AD=2$\sqrt{3}$,AA1=2,BC和A1C1所成的角=45度
AA1和BC1所成的角=60度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率$e=\frac{1}{2}$,且過點(diǎn)Q$(1,\;\frac{3}{2})$
(1)求橢圓C的方程.
(2)橢圓C長軸兩端點(diǎn)分別為A,B,點(diǎn)P為橢圓上異于A,B的動(dòng)點(diǎn),定直線x=4與直線PA,PB分別交于M,N兩點(diǎn),直線PA,PB的斜率分別為k1,k2
①證明${k_1}{k_2}=-\frac{3}{4}$;
②若E(7,0),過E,M,N三點(diǎn)的圓是否過x軸上不同于點(diǎn)E的定點(diǎn)?若經(jīng)過,求出定點(diǎn)坐標(biāo);若不經(jīng)過,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,三棱錐A-BCD中,△ABC和△BCD所在平面互相垂直,且AB=CD=4,AC=4$\sqrt{2}$,CD=4$\sqrt{3}$,∠ACB=45°,E,F(xiàn)分別為MN的中點(diǎn).
(1)求證:EF∥平面ABD;
(2)求二面角E-BF-C的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合A={x||x-1|≥1,x∈R},B={x||x-2|<1,x∈Z},則A∩B( 。
A.[2,3]B.[2,3)C.{2,3}D.{2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.橢圓$\left\{\begin{array}{l}x=5cosθ\\ y=4sinθ\end{array}\right.$(θ為參數(shù))的焦距為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)$f(x)=sin(2x+\frac{π}{3})$在區(qū)間[0,a](其中a>0)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是( 。
A.$0<a≤\frac{π}{2}$B.$0<a≤\frac{π}{12}$
C.$a=kπ+\frac{π}{12},k∈{N^*}$D.$2kπ<a≤2kπ+\frac{π}{12},k∈N$

查看答案和解析>>

同步練習(xí)冊答案