已知函數(shù)f(x)=(x-a)lnx,(a≥0).
(1)當(dāng)a=0時(shí),若直線y=2x+m與函數(shù)y=f(x)的圖象相切,求m的值;
(2)若f(x)在[1,2]上是單調(diào)減函數(shù),求a的最小值;
(3)當(dāng)x∈[1,2e]時(shí),|f(x)|≤e恒成立,求實(shí)數(shù)a的取值范圍.(e為自然對(duì)數(shù)的底).
(1)當(dāng)a=0時(shí),f(x)=xlnx,∴f′(x)=lnx+1
∵直線y=2x+m與函數(shù)y=f(x)的圖象相切,∴l(xiāng)nx+1=2,∴x=e
∵f(e)=e,∴切點(diǎn)為(e,e),∴m=-e;
(2)f′(x)=lnx+1-
a
x

∵f(x)在[1,2]上是單調(diào)減函數(shù),
f′(x)=lnx+1-
a
x
≤0在[1,2]上恒成立
∴a≥xlnx+x在[1,2]上恒成立
令g(x)=xlnx+x,則g′(x)=lnx+2>0
∴g(x)=xlnx+x在[1,2]上單調(diào)遞增
∴a≥≥g(2)=2ln2+2
∴a的最小值為2ln2+2;
(3)|f(x)|≤e等價(jià)于-e≤(x-a)lnx≤e
∴-
e
lnx
≤x-a≤
e
lnx

∴x-
e
lnx
≤a≤x+
e
lnx

設(shè)h(x)=x+
e
lnx
,t(x)=x-
e
lnx
,則t(x)max≤a≤h(x)min,
h′(x)=
xln2x-e
xln2x
,∵h(yuǎn)′(e)=0
令s(x)=xln2x-e,x∈[1,2e],則s′(x)=ln2x+lnx>0
∴h(x)在[1,2e]上單調(diào)遞增,∴h(x)min=h(e)=2e,
∵t′(x)=1+
e
xln2x
>0,∴t(x)在[1,2e]上單調(diào)遞增,
∴t(x)max=t(2e)=2e-
e
ln2e

綜上,2e-
e
ln2e
≤a≤2e.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關(guān)于直線x=
π
6
對(duì)稱,求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時(shí)f(x)的表達(dá)式;
(2)若關(guān)于x的方程f(x)-a=o有解,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項(xiàng)和為Sn,則S2010的值為( 。
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對(duì)于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案