已知log32x-2log3x-3≤0,求函數(shù)f(x)=log2
x
32
)•log2(2x)的最大值與最小值.
考點(diǎn):對數(shù)的運(yùn)算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:求解對數(shù)不等式得到x的范圍,進(jìn)一步求得log2x的范圍,化簡f(x)=log2
x
32
)•log2(2x)后利用配方法求得最值.
解答: 解:由log32x-2log3x-3≤0,解得:-1≤log3x≤3,
1
3
≤x≤27

則f(x)=log2
x
32
)•log2(2x)
=(log2x-log225)•(1+log2x)
=(log2x-5)(log2x+1)=(log2x)2-4log2x-5
=(log2x-2)2-9
1
3
≤x≤27
,∴-log23≤log2x≤3log23,
∴當(dāng)log2x=2,即x=4時(shí),f(x)min=-9;
當(dāng)log2x=-log23,即x=
1
3
時(shí),f(x)max=(log23)2+4log23-5
點(diǎn)評:本題考查了對數(shù)函數(shù)的運(yùn)算性質(zhì),考查了利用配方法求函數(shù)的最值,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的是( 。
A、樣本10,6,8,5,6的標(biāo)準(zhǔn)差是3.3.
B、“p∨q為真”是“p∧q為真”的充分不必要條件
C、已知點(diǎn)A(-2,1)在拋物線y2=2px(p>0)的準(zhǔn)線上,記其焦點(diǎn)為F,則直線AF的斜率等于-4
D、設(shè)有一個(gè)回歸直線方程為
?
y
=2-1.5x
,則變量x每增加一個(gè)單位,
?
y
平均減少1.5個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法錯(cuò)誤的是( 。
A、命題p“?x∈R,ax>0(a>0且a≠1),則¬p:?x0∈R,ax0≤0
B、如果命題“¬p”與命題“p或q”都是真命題,那么命題q一定是真命題
C、特稱命題“?x∈R,使-2x2+x-4=0”是假命題
D、命題“若a,b都是偶數(shù),則a+b是偶數(shù)”的否命題是“若a,b都不是偶數(shù),則a+b不是偶數(shù)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某幾何體的側(cè)視圖與其正視圖相同,相關(guān)的尺寸如圖所示,則這個(gè)幾何體的表面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα>0,且sinα+cosα<0,則(  )
A、cosα>0
B、cosα<0
C、cosα=0
D、cosα符號不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-ax+
a
2
,x∈[0,1].
(1)當(dāng)a=2時(shí),求f(x)的最小值;
(2)當(dāng)a∈R時(shí),求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

山區(qū)一林場2013年底的木材存量為30萬立方米,森林以每年20%的增長率生長.從今年起每年年底要砍伐1萬立方米的木材,設(shè)從今年起的第n年底的木材存量為an萬立方米.
(Ⅰ)試寫出an+1與an的關(guān)系式,并證明數(shù)列{an-5}是等比數(shù)列;
(Ⅱ)問大約經(jīng)過多少年,林場的木材總存量達(dá)到125萬立方米?(參考數(shù)據(jù):lg2=0.30,lg3=0.48)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓25x2+9y2=225的長軸長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)f(x)=sin2x(x∈R)的圖象向右平移
π
4
個(gè)單位,則所得到的圖象對應(yīng)的函數(shù)在下列區(qū)間中單調(diào)遞增的是(  )
A、(
4
,π)
B、(
π
2
,
4
C、(0,
π
2
D、(-
π
4
,0)

查看答案和解析>>

同步練習(xí)冊答案