1.四棱柱ABCD-A1B1C1D1中,AB=BC,AA1=2AB,則CD與平面BDC1所成角的正弦值等于(  )
A.$\frac{2}{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{2}}{3}$D.$\frac{1}{3}$

分析 設(shè)AB=1,則AA1=2,建立空間直角坐標系,求出向量坐標,平面BDC1的一個法向量,設(shè)CD與平面BDC1所成角為θ,利用向量的夾角公式求出sinθ即可.

解答 解:設(shè)AB=1,則AA1=2,建立如圖所示空間直角坐標系,則D(0,0,2),C1(0,1,0),B(1,1,2),C(0,1,2),
∴$\overrightarrow{DB}$=(1,1,0),$\overrightarrow{D{C}_{1}}$=(0,1,-2),$\overrightarrow{DC}$=(0,1,0),
設(shè)$\overrightarrow{n}$=(x,y,z)為平面BDC1的一個法向量,
則$\left\{\begin{array}{l}{x+y=0}\\{y-2z=0}\end{array}\right.$,取$\overrightarrow{n}$=(-2,2,1),
設(shè)CD與平面BDC1所成角為θ,則sinθ=|$\frac{2}{\sqrt{4+4+1}•1}$|=$\frac{2}{3}$,
故選:A.

點評 本題考查直線與平面所成的角,考查空間向量的運算及應(yīng)用,準確理解線面角與直線方向向量、平面法向量夾角關(guān)系是解決問題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.對于任意向量$\overrightarrow a$、$\overrightarrow b$、$\overrightarrow c$,下列命題中正確的是( 。
A.$|{\overrightarrow a•\overrightarrow b}|=|{\overrightarrow a}||{\overrightarrow b}|$B.$|{\overrightarrow a+\overrightarrow b}|=|{\overrightarrow a}|+|{\overrightarrow b}|$C.$(\overrightarrow a•\overrightarrow b)\overrightarrow c=\overrightarrow a(\overrightarrow b•\overrightarrow c)$D.$\overrightarrow a•\overrightarrow a={|{\overrightarrow a}|^2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)$f(x)=-\frac{1}{x}-2$
(1)求證:f(x)在區(qū)間(-∞,0)上是單調(diào)增函數(shù).
(2)求證:f(x)在定義域內(nèi)不是單調(diào)增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)奇函數(shù)f(x)滿足f(x-2)=f(x),當0≤x≤1時f(x)=2x-4x2,則$f(-\frac{9}{2})$=( 。
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知i是虛數(shù)單位,則$\frac{{{i^{2015}}}}{1+i}$( 。
A.$\frac{1-i}{2}$B.$\frac{1+i}{2}$C.$\frac{-1-i}{2}$D.$\frac{-1+i}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.求函數(shù)f(x)=x(1-x2)在[0,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD為平行四邊形,∠ABC+∠ADC=90°,E是線段AD的中點,F(xiàn)在線段PD上運動,記$\frac{PF}{PD}$=λ.
(1)若λ=$\frac{1}{2}$,證明:平面BEF⊥平面ABCD;
(2)若λ=$\frac{1}{3}$,PA=AB=AC=6,求三棱錐C-BEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.(Ⅰ)已知y=$\frac{{1-{x^2}}}{e^x}$,求y′.
(Ⅱ)已知y=x2sin(3x+π),求y′.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.從6個盒子中選出3個來裝東西,且甲、乙兩個盒子至少有一個被選中的情況有( 。
A.16種B.18種C.22種D.37種

查看答案和解析>>

同步練習(xí)冊答案