11.已知橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{3}}}{2}$,順次連接橢圓E的四個頂點得到的四邊形的面積為16.
(Ⅰ)求橢圓E的方程;
(Ⅱ)過橢圓E的頂點P(0,b)的直線l交橢圓于另一點M,交x軸于點N,若|PN|、|PM|、|MN|成等比數(shù)列,求直線l的斜率.

分析 (Ⅰ)由橢圓離心率即四邊形的面積公式,求得a和b的值,即可求得橢圓E的方程;
(Ⅱ)直線l的方程為y=kx+2,代入橢圓方程,求得M點坐標,由$\frac{|PM|}{|PN|}=\frac{|MN|}{|PM|}$,即可求得k的值.

解答 解:(Ⅰ)由題意可得:2ab=16,①
又由$e=\frac{c}{a}=\frac{{\sqrt{3}}}{2}$,c2=a2-b2,得a=2b,②
解①②的a=4,b=2,所以橢圓E的方程為$\frac{x^2}{16}+\frac{y^2}{4}=1$.
(Ⅱ)由題意|PM|2=|PN|•|MN|,故點N在PM的延長線上,
當直線l的斜率不存在時,|PM|2≠|(zhì)PN|•|MN|,不合題意;
當直線l的斜率存在時,設(shè)直線l的方程為y=kx+2,
令y=0,得${x_N}=-\frac{2}{k}$,
將直線l的方程代入橢圓E的方程$\frac{x^2}{16}+\frac{y^2}{4}=1$,
得(4k2+1)x2+16kx=0,
因為xp=0,解得${x_M}=-\frac{16k}{{4{k^2}+1}}$,
由$\frac{|PM|}{|PN|}=\frac{|MN|}{|PM|}$,得$\frac{{{x_P}-{x_M}}}{{{x_P}-{x_N}}}=\frac{{{x_M}-{x_N}}}{{{x_P}-{x_M}}}$,即$\frac{{\frac{16k}{{4{k^2}+1}}}}{{\frac{2}{k}}}=\frac{{\frac{2}{k}-\frac{16k}{{4{k^2}+1}}}}{{\frac{16k}{{4{k^2}+1}}}}$,
解得:${k^3}=\frac{1}{80}$,即k=$\frac{1}{4\sqrt{5}}$,
直線l的斜率$\frac{1}{4\sqrt{5}}$=$\frac{\sqrt{5}}{20}$.

點評 本題考查橢圓的標準方程及簡單幾何性質(zhì),考查直線與橢圓的位置關(guān)系,考查計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知sin2α<0,cosα<0,則下列各式一定成立的是( 。
A.sinα<0B.tanα>0C.sinα+cosα>0D.sinα-cosα>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在△ABC中,角A,B,C的對邊分別是a,b,c,若$\frac{a}{sinB}+\frac{sinA}=2c$,則A=( 。
A.45°B.30°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知i是虛數(shù)單位,若復(fù)數(shù)$z=\frac{1+2i}{i}$,則復(fù)數(shù)|z|=( 。
A.$\sqrt{3}$B.$\sqrt{5}$C.3D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在四棱錐P-ABCD中,底面ABCD是平行四邊形,∠BAD=135°,PA⊥底面ABCD,AB=AC=PA=1,E,F(xiàn)分別是BC,AD的中點,點M在線段PD上.
(1)求證:平面PAC⊥平面EFM;
(2)求點A到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.對于正整數(shù)n,設(shè)曲線y=xn(1-x)在x=2的切線與平面直角坐標系的y軸交點的縱坐標為an,則數(shù)列$\{{log_2}\frac{a_n}{n+1}\}$的前10項等于55.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{1}{2}{x^2}$-(a+1)x+2(a-1)lnx,g(x)=-$\frac{3}{2}{x^2}$+x+(4-2a)lnx.
(1)若a>1,討論函數(shù)f(x)的單調(diào)性;
(2)是否存在實數(shù)a,對任意x1,x2∈(0,+∞),x1≠x2,有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}$+a>0恒成立,若存在,求出a的范圍,若不存在,請說明理由;
(3)記h(x)=f(x)+g(x),如果x1,x2是函數(shù)h(x)的兩個零點,且x1<x2<4x1,h′(x)是h(x)的導(dǎo)函數(shù),證明:${h^'}(\frac{{2{x_1}+{x_2}}}{3})>0$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點為F,第二象限的點M在雙曲線C的漸近線上,且|OM|=a,若直線MF的斜率為$\frac{a}$,則雙曲線C的漸近線方程為( 。
A.y=±xB.y=±2xC.y=±3xD.y=±4x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=2sin(ωx+φ),x∈[-$\frac{π}{12}$,$\frac{2π}{3}$]的圖象如圖所示,若f(x1)=f(x2),且x1≠x2,則f(x1+x2)的值為( 。
A.0B.1C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

同步練習冊答案