【題目】已知函數(shù)且.
(I)若,求函數(shù)的單調(diào)區(qū)間;(其中是自然對數(shù)的底數(shù))
(II)設(shè)函數(shù),當時,曲線與有兩個交點,求的取值范圍.
【答案】(I)增區(qū)間為,減區(qū)間為(II)
【解析】試題分析:(I)定義域,求得 利用, ,即可判定函數(shù)的單調(diào)區(qū)間;
(II)聯(lián)立兩函數(shù)得 ,令
可得 ,根據(jù)和分類討論,即可求的取值范圍。
試題解析:
(I)定義域
時,
由得增區(qū)間為,
由得減區(qū)間為
(II)聯(lián)立與得=,
令
則
當時, ,
由得, , 在上單調(diào)遞增
由得, , 在上單調(diào)遞減
由題意得
令,則,
單調(diào)遞增,
令單調(diào)遞增,
時, , 合題意
當時, ,
由得, , 在上單調(diào)遞增
由得, , 在上單調(diào)遞減
由題意得
令單調(diào)遞減,
令,則,
單調(diào)遞減
時, 合題意.
綜上, 的取值范圍是
科目:高中數(shù)學 來源: 題型:
【題目】某大學餐飲中心為了解新生的飲食習慣,在全校一年級學生中進行了抽樣調(diào)查,調(diào)查結(jié)果如下表所示:
喜歡甜品 | 不喜歡甜品 | 合 計 | |
南方學生 | 60 | 20 | 80 |
北方學生 | 10 | 10 | 20 |
合 計 | 70 | 30 | 100 |
⑴根據(jù)表中數(shù)據(jù),問是否有95%的把握認為“南方學生和北方學生在選用甜品的飲食習慣方面有差
異”;
⑵已知在被調(diào)查的北方學生中有5名數(shù)學系的學生,其中2名喜歡甜品,現(xiàn)在從這5名學生中隨機
抽取3人,求至多有1人喜歡甜品的概率.
0.100 | 0.050 | 0.010 | |
2.706 | 3.841 | 6.635 |
附: ,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】據(jù)統(tǒng)計,截至2016年底全國微信注冊用戶數(shù)量已經(jīng)突破9.27億.為調(diào)查大學生這個微信用戶群體中每人擁有微信群的數(shù)量,現(xiàn)從某市大學生中隨機抽取100位同學進行了抽樣調(diào)查,結(jié)果如下:
(1)求,,的值及樣本中微信群個數(shù)超過12的概率;
(2)若從這100位同學中隨機抽取2人,求這2人中恰有1人微信群個數(shù)超過12的概率;
(3)以(1)中的頻率作為概率,若從全市大學生中隨機抽取3人,記表示抽到的是微信群個數(shù)超過12的人數(shù),求的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司在迎新年晚會上舉行抽獎活動,有甲、乙兩個抽獎方案供員工選擇;
方案甲:員工最多有兩次抽獎機會,每次抽獎的中獎率為.第一次抽獎,若未中獎,則抽獎結(jié)束.若中獎,則通過拋一枚質(zhì)地均勻的硬幣,決定是否繼續(xù)進行第二次抽獎,規(guī)定:若拋出硬幣,反面朝上,員工則獲得500元獎金,不進行第二次抽獎;若正面朝上,員工則須進行第二次抽獎,且在第二次抽獎中,若中獎,獲得獎金1000元;若未中獎,則所獲獎金為0元.
方案乙:員工連續(xù)三次抽獎,每次中獎率均為,每次中獎均可獲獎金400元.
(1)求某員工選擇方案甲進行抽獎所獲獎金(元)的分布列;
(2)某員工選擇方案乙與選擇方案甲進行抽獎,試比較哪個方案更劃算?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,過橢圓右焦點的直線交橢圓于兩點, 為的中點,且直線的斜率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)另一直線與橢圓交于兩點,原點到直線的距離為,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,已知點,曲線的參數(shù)方程為.以原點為極點, 軸正半軸為極軸建立極坐標系,直線的極坐標方程為.
(Ⅰ)判斷點與直線的位置關(guān)系并說明理由;
(Ⅱ)設(shè)直線與曲線的兩個交點分別為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【2017唐山模擬】如圖,ABCDA1B1C1D1為正方體,連接BD,AC1,B1D1, CD1,B1C,現(xiàn)有以下幾個結(jié)論:①BD∥平面CB1D1;②AC1⊥平面CB1D1;③AC1與底面ABCD所成角的正切值是;④CB1與BD為異面直線,其中所有正確結(jié)論的序號為________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】關(guān)于下列命題: ①若函數(shù)y=2x的定義域是{x|x≤0},則它的值域是{y|y≤1};
②若函數(shù)y= 的定義域是{x|x>2},則它的值域是{y|y≤ };
③若函數(shù)y=x2的值域是{y|0≤y≤4},則它的定義域一定是{x|﹣2≤x≤2};
④若函數(shù)y=log2x的值域是{y|y≤3},則它的定義域是{x|0<x≤8}.
其中不正確的命題的序號是 . (注:把你認為不正確的命題的序號都填上)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com