7.已知復(fù)數(shù)z的實(shí)部和虛部相等,且z(2+i)=3-bi(b∈R),則|z|=( 。
A.3$\sqrt{2}$B.2$\sqrt{2}$C.3D.2

分析 把已知等式變形,利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),再由實(shí)部和虛部相等求得b,得到z,代入復(fù)數(shù)模的計(jì)算公式得答案.

解答 解:由z(2+i)=3-bi,得$z=\frac{3-bi}{2+i}=\frac{(3-bi)(2-i)}{(2+i)(2-i)}$=$\frac{6-b-(2b+3)i}{5}$,
∴6-b=-2b-3,解得b=-9.
∴z=3+3i,
則|z|=$\sqrt{{3}^{2}+{3}^{2}}=3\sqrt{2}$.
故選:A.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)模的求法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.從1,2,3,4,5這5個(gè)數(shù)字中任取3個(gè)數(shù)字組成沒(méi)有重復(fù)數(shù)字的三位數(shù),則這個(gè)三位數(shù)是偶數(shù)的概率為(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{1}{2}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.在${(\sqrt{x}-{2^{-1}}x)^n}$的二項(xiàng)展開(kāi)式中,若第四項(xiàng)的系數(shù)為-7,則n=(  )
A.9B.8C.7D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,向量$\overrightarrow{m}$=(sinC-sinA,sinC-sinB)與$\overrightarrow{n}$=(b+c,a)共線.
(I)求角B的大;
(II)若b=2$\sqrt{3}$,c=$\sqrt{6}+\sqrt{2}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知{an}為公差不為零的等差數(shù)列,其中a1,a2,a5成等比數(shù)列,a3+a4=12
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記bn=$\frac{2}{{a}_{n}{a}_{n+1}}$,設(shè){bn}的前n項(xiàng)和為Sn,求最小的正整數(shù)n,使得Sn>$\frac{2016}{2017}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.我們把滿足:${x_{n+1}}={x_n}-\frac{{f({x_n})}}{{f'({x_n})}}$的數(shù)列{xn}叫做牛頓數(shù)列.已知函數(shù)f(x)=x2-1,數(shù)列{xn}為牛頓數(shù)列,設(shè)${a_n}=ln\frac{{{x_n}-1}}{{{x_n}+1}}$,已知a1=2,則a3=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,A1,A2為其左、右頂點(diǎn),以線段F1F2為直徑的圓與雙曲線的漸進(jìn)線在第一象限的交點(diǎn)為M,且∠MA1A2=45°,則雙曲線的離心率為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.在下列結(jié)論中①“p∧q”為真是“p∨q”為真的充分不必要條件;②“p∧q”為假是“p∨q”為真的充分不必要條件;③“p∧q”為真是“?p”為假的充分不必要條件;④“?p”為真是“p∧q”為假的充分不必要條件.正確的是①③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.某幾何體的三視圖如圖所示(網(wǎng)絡(luò)中每個(gè)小正方形的邊長(zhǎng)為1),若這個(gè)幾何體的頂點(diǎn)都在球O的表面上,則這個(gè)球的表面積是( 。
A.20πB.4$\sqrt{5}$πC.$\frac{49π}{16}$D.$\frac{49π}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案