已知集合A={x|1<x<5},B={x|x2-3x+2<0},則CAB=(  )
A、{x|2<x<5}
B、{x|2≤x<5}
C、{x|2≤x≤5}
D、∅
考點(diǎn):補(bǔ)集及其運(yùn)算
專題:集合
分析:先求出不等式x2-3x+2<0的解集B,再由題意和補(bǔ)集的運(yùn)算求出CAB.
解答: 解:由x2-3x+2<0得,1<x<2,則集合B={x|1<x<2},
因?yàn)榧螦={x|1<x<5},所以CAB={x|2≤x<5},
故選:B.
點(diǎn)評(píng):本題考查補(bǔ)集及其運(yùn)算,以及一元二次不等式的解法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2sin(2ωx-
π
3
)(ω>0)與g(x)=cos(2x+φ)(|φ|<
π
2
)有相同的對(duì)稱中心.
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)將函數(shù)g(x)的圖象向右平移
π
6
個(gè)單位,再向上平移1個(gè)單位,得到函數(shù)h(x)的圖象,求函數(shù)h(x)在[-
π
3
,
π
3
]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

是否存在實(shí)數(shù)β使復(fù)數(shù)cosβ+isinβ對(duì)應(yīng)點(diǎn)在直線2x+2y-3=0上?若存在,求出β;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(α)=
sin(π-α)cos(-α)sin(
π
2
+α)
cos(π+α)sin(-α)

(1)化簡(jiǎn)f(α);
(2)若角 A是△A BC的內(nèi)角,且f(A)=
3
5
,求tan A-sin A的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=loga(4-ax)在[-1,2]上單調(diào)遞減,則正實(shí)數(shù)a的取值范圍是( 。
A、a>2
B、1<a<2
C、
1
4
<a<1,或1<a<2
D、以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={x|y=lg(3-2x)},集合B={x|y=
1-x
},則A∩B=( 。
A、[1,
3
2
)
B、(-∞,1]
C、(-∞,
3
2
]
D、(
3
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

|4m|
m2+3
9-24m2
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=Asin(ωx+
π
4
)(其中A>0,ω>0)的振幅為2,周期為π.
(1)求f(x)的解析式并寫出f(x)的單調(diào)增區(qū)間;
(2)將f(x)的圖象先左移
π
4
個(gè)單位,再將每個(gè)點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉?lái)的2倍,得到g(x)的圖象,求g(x)解析式和對(duì)稱中心(m,0),m∈[0,π].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ln
1-ax
x-1
(a≠1)是奇函數(shù).
(1)求實(shí)數(shù)a的值;
(2)求證:函數(shù)g(x)=f(x)-2x在區(qū)間[
9
8
5
4
]上有唯一零點(diǎn)(參考數(shù)據(jù):ln3≈1.099,ln17≈2.833)

查看答案和解析>>

同步練習(xí)冊(cè)答案