3.已知扇形AOB的周長是6cm,其圓心角是1rad,則該扇形的面積為(  )
A.2 cm2B.3 cm2C.$\frac{9}{2}$cm2D.5cm2

分析 由已知中,扇形AOB的周長是6cm,該扇形的中心角是1弧度,我們可設(shè)計算出弧長與半徑的關(guān)系,進而求出弧長和半徑,代入扇形面積公式,即可得到答案.

解答 解:∵扇形圓心角1弧度,所以扇形周長和面積為整個圓的$\frac{1}{2π}$.
弧長l=2πr•$\frac{1}{2π}$=r,
故扇形周長C=l+2r=3r=6cm,
∴r=2cm.
扇形面積S=π•r2•$\frac{1}{2π}$=2cm2
故選:A.

點評 本題考查的知識點是扇形面積公式,弧長公式,其中根據(jù)已知條件,求出扇形的弧長及半徑,是解答本題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)集合U={1,2,3,4,5,6},A={1,3,5},B={2,3,4},則圖中陰影部分所表示的集合為(  )
A.{3}B.{2,4}C.{2,3,4}D.{3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若cos100°=m,則tan80°=-$\frac{\sqrt{1-{m}^{2}}}{m}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知橢圓的中心點在原點,離心率e=$\frac{1}{2}$,且它的一個焦點與拋物線y2=-4x的焦點重合,則此橢圓方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.將三顆骰子各擲一次,設(shè)事件A=“三個點數(shù)都不相同”,B=“至少出現(xiàn)一個6點”,則概率P(A|B)等于( 。
A.$\frac{5}{18}$B.$\frac{1}{2}$C.$\frac{60}{91}$D.$\frac{91}{216}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.從$(x-\frac{a}{{\sqrt{x}}})\begin{array}{l}5\\{\;}\end{array}$的展開式中任選一項,則字母x的冪指數(shù)為整數(shù)的概率為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)f(x)=sinx+2x,若對于區(qū)間[-π,π]上的任意x1,x2,都有|f(x1)-f(x2)|≤t,則實數(shù)t的最小值是( 。
A.B.C.πD.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=sinx+$\frac{2}{sinx}$,試判斷f(x)在(0,π)內(nèi)的增減性,且證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.為了了解甲乙丙三所學(xué)校高三數(shù)學(xué)模擬考試的情況,現(xiàn)采取分層抽樣的方法從甲校的1260份,乙校的720份,丙校的900份模擬試卷中抽取試卷進行調(diào)研,如果從丙校抽取了50份,那么這次調(diào)研一共抽查的試卷份數(shù)為160.

查看答案和解析>>

同步練習(xí)冊答案