求方程cos2x-3sinx+1=0,x∈(
π
2
,π)的解是
 
考點:二倍角的余弦
專題:計算題,三角函數(shù)的求值
分析:把原方程利用二倍角的余弦函數(shù)公式化簡,得到關(guān)于sinx的一元二次方程,求出方程的解即可得到sinx的值,然后根據(jù)x的范圍,利用特殊角的三角函數(shù)值即可求出x的值,得到原方程的解.
解答: 解:原方程化為:1-2sin2x-3sinx+1=0,
即(sinx+2)(2sinx-1)=0,
解得:sinx=
1
2
,
又x∈(
π
2
,π),
所以x=
6

故答案為:x=
6
點評:此題考查學(xué)生靈活運用二倍角的余弦函數(shù)公式及特殊角的三角函數(shù)值化簡求值,是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x-lnx,g(x)=ex-x.
(Ⅰ)求f(x)的最小值;
(Ⅱ)若存在x∈(0,+∞),使不等式
2x-m
g(x)
>x成立,求m的取值范圍;
(Ⅲ)當(dāng)x>0時,證明:|lnx-ex|>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在長方體ABCD-A1B1C1D1中,底面是邊長為2的正方形,高為4.
(Ⅰ)求證:平面BDD1B1⊥平面B1AC;
(Ⅱ)求直線AB1與平面BDD1B1所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果復(fù)數(shù)z=
a+i
i
(a∈R)的實部和虛部相等,則zi等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+
a
x
+b(x≠0),其中a,b∈R.在點P(2,f(2))處的切線方程為y=3x+1,則函數(shù)a=
 
,b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A,B,C是三個集合,那么“A=B”是“A∩C=B∩C”成立的
 
條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若z是復(fù)數(shù),|z+2-2i|=2,則|z+1-i|+|z|的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}的前n項和為Sn,且S9=-36,S13=-104,則a6=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式kx2-4kx-3<0對任意k∈[-1,1]時均成立,則x的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊答案