【題目】
已知在與時都取得極值.
(Ⅰ)求的值;
(Ⅱ)若,求的單調區(qū)間和極值.
【答案】(Ⅰ),;(Ⅱ)f (x)的遞增區(qū)間為和(1,+∞),遞減區(qū)間為.當x=-時,f(x)有極大值f=;當x=1時,f(x)有極小值f(1)=-.
【解析】
(1)因為函數(shù)在極值點處導數(shù)等于0,所以若f(x)在與時,都取得極值,則就可得到a,b的值;(2)先由求出函數(shù)中的c值,再求導數(shù),令導數(shù)大于0,解得x的范圍是函數(shù)的增區(qū)間,令導數(shù)小于0,解得x的范圍是函數(shù)的減區(qū)間,增區(qū)間與減區(qū)間的分界點為極值點,且當極值點左側導數(shù)大于0,右側導數(shù)小于0時取得極大值,當極值點左側導數(shù)小于0,右側導數(shù)大于0時取得極小值,再把x的值代入原函數(shù)求出極大值與極小值
試題解析:f′(x)=3x2+2ax+b=0.由題設知x=1,x=-為f′(x)=0的解.∴ -a=1-,=1×.∴ a=-,b=-2.經檢驗,這時x=1與x=-都是極值點.
(2)f(x)=x3-x2-2x+c,由f(-1)=-1-+2+c=,得c=1.∴ f (x)=x3-x2-2x+1.
x | 1 | ||||
+ | 0 | - | 0 | + | |
遞增 | 極大值 | 遞減 | 極小值 | 遞增 |
∴ f (x)的遞增區(qū)間為和(1,+∞),遞減區(qū)間為.當x=-時,f(x)有極大值f=;當x=1時,f(x)有極小值f(1)=-.
科目:高中數(shù)學 來源: 題型:
【題目】
已知函數(shù).
(1)討論f(x)的單調性,并證明f(x)有且僅有兩個零點;
(2)設x0是f(x)的一個零點,證明曲線y=ln x 在點A(x0,ln x0)處的切線也是曲線的切線.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下面幾種推理過程是演繹推理的是( 。
A. 某校高三有8個班,1班有51人,2班有53人,3班有52人,由此推測各班人數(shù)都超過50人
B. 由三角形的性質,推測空間四面體的性質
C. 平行四邊形的對角線互相平分,菱形是平行四邊形,所以菱形的對角線互相平分
D. 在數(shù)列中,,可得,由此歸納出的通項公式
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,點P到兩點(0,),(0,),的距離之和等于4,設點P的軌跡為C.
(1)求C的方程.
(2)設直線與C交于A,B兩點,求弦長|AB|,并判斷OA與OB是否垂直,若垂直,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】圖1是由矩形ADEB,Rt△ABC和菱形BFGC組成的一個平面圖形,其中AB=1,BE=BF=2,∠FBC=60°,將其沿AB,BC折起使得BE與BF重合,連結DG,如圖2.
(1)證明:圖2中的A,C,G,D四點共面,且平面ABC⊥平面BCGE;
(2)求圖2中的二面角BCGA的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知點為拋物線,點為焦點,過點的直線交拋物線于兩點,點在拋物線上,使得的重心在軸上,直線交軸于點,且在點右側.記的面積為.
(1)求的值及拋物線的標準方程;
(2)求的最小值及此時點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】改革開放以來,人們的支付方式發(fā)生了巨大轉變.近年來,移動支付已成為主要支付方式之一.為了解某校學生上個月A,B兩種移動支付方式的使用情況,從全校所有的1000名學生中隨機抽取了100人,發(fā)現(xiàn)樣本中A,B兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學生的支付金額分布情況如下:
支付金額 支付方式 | 不大于2000元 | 大于2000元 |
僅使用A | 27人 | 3人 |
僅使用B | 24人 | 1人 |
(Ⅰ)估計該校學生中上個月A,B兩種支付方式都使用的人數(shù);
(Ⅱ)從樣本僅使用B的學生中隨機抽取1人,求該學生上個月支付金額大于2000元的概率;
(Ⅲ)已知上個月樣本學生的支付方式在本月沒有變化.現(xiàn)從樣本僅使用B的學生中隨機抽查1人,發(fā)現(xiàn)他本月的支付金額大于2000元.結合(Ⅱ)的結果,能否認為樣本僅使用B的學生中本月支付金額大于2000元的人數(shù)有變化?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,橢圓C:的焦點為F1(–1、0),
F2(1,0).過F2作x軸的垂線l,在x軸的上方,l與圓F2:交于點A,與橢圓C交于點D.連結AF1并延長交圓F2于點B,連結BF2交橢圓C于點E,連結DF1.已知DF1=.
(1)求橢圓C的標準方程;
(2)求點E的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知圓心在軸上,半徑為2的圓位于軸右側,且與直線相切.
(1)求圓的方程;
(2)在圓上,是否存在點,使得直線與圓相交于不同的兩點,且的面積最大?若存在,求出點的坐標及對應的的面積;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com