(12分)若存在實(shí)數(shù)和,使得函數(shù)與對(duì)其定義域上的任意實(shí)數(shù)分別滿足:,則稱直線為與的“和諧直線”.已知為自然對(duì)數(shù)的底數(shù));
(1)求的極值;
(2)函數(shù)是否存在和諧直線?若存在,求出此和諧直線方程;若不存在,請(qǐng)說(shuō)明理由.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分分)
已知函數(shù).當(dāng)時(shí),函數(shù)取得極值.
(I)求實(shí)數(shù)的值;
(II)若時(shí),方程有兩個(gè)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(1)當(dāng)時(shí),在上恒成立,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),若函數(shù)在上恰有兩個(gè)不同零點(diǎn),求實(shí)數(shù)的取值范圍;
(3)是否存在實(shí)數(shù),使函數(shù)f(x)和函數(shù)在公共定義域上具有相同的單調(diào)區(qū)間?若存在,求出的值,若不存在,說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題14分)已知函數(shù)f (x) = ax3 +x2 -ax,其中a,x∈R.
(Ⅰ)若函數(shù)f (x)在區(qū)間(1,2)上不是單調(diào)函數(shù),試求a的取值范圍;
(Ⅱ)直接寫出(不需給出運(yùn)算過(guò)程)函數(shù)的單調(diào)遞減區(qū)間;
(Ⅲ)如果存在a∈(-∞,-1],使得函數(shù), x∈[-1, b](b > -1),在x = -1處取得最小值,試求b的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)已知函數(shù).
(Ⅰ)求函數(shù)的定義域;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)時(shí),若存在使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)設(shè)(e為自然對(duì)數(shù)的底)。
(1)求p與q的關(guān)系;
(2)若在其定義域?yàn)閱握{(diào)函數(shù),求p的取值范圍。
(3)證明:。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)已知二次函數(shù)
為常數(shù));.若直線1、2與函數(shù)的圖象以及2,y軸與函數(shù)的圖象
所圍成的封閉圖形如陰影所示.
(1)求、b、c的值;
(2)求陰影面積S關(guān)于t的函數(shù)S(t)的解析式;
(3)若問(wèn)是否存在實(shí)數(shù)m,使得的圖象與的圖象有且只有兩個(gè)不同的交點(diǎn)?若存在,求出m的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分13分)已知是函數(shù)的極值點(diǎn).
(1) 求的值;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)當(dāng)R時(shí),試討論方程的解的個(gè)數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com