【題目】已知.
(Ⅰ)討論的單調(diào)性;
(Ⅱ)若存在兩個極值點且,求的取值范圍.
【答案】(Ⅰ)詳見解析;(Ⅱ).
【解析】
試題分析:(Ⅰ)首先,函數(shù)的定義域為,然后求函數(shù)的導數(shù),最后分和兩種情況討論的解集,得到函數(shù)的單調(diào)區(qū)間;(Ⅱ)首先求函數(shù)的導數(shù),然后分和兩種情況討論函數(shù)的極值點,借助二次方程根與系數(shù)的關系,化簡,通過換元將問題轉(zhuǎn)化為函數(shù)<0,求的取值范圍,即求函數(shù)的導數(shù),判定定義域內(nèi)的單調(diào)性,求函數(shù)的最值,判斷函數(shù)的最大值是否小于0,求的取值范圍.
試題解析:(1)由已知得,
①若時,由,得:,恒有,
∴在遞增;
②若,由,得:,恒有,
∴在遞減;
綜上,時,在遞增,
時,在遞減;
(2),
∴,
令,時,無極值點,
時,令得:或,
由的定義域可知且,
∴且,解得:,
∴為的兩個極值點,
即
且,得:
=,
令,
①時,,∴,∴,
∴在遞減,,
即時,成立,符合題意;
②時,,∴,
∴在(0,1)遞減,,
∴時,,不合題意,
綜上,.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正四棱錐 中底面邊長為,側(cè)棱PA與底面ABCD所成角的正切值為.
(I)求正四棱錐 的外接球半徑;
(II)若 是 中點,求異面直線 與 所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】3名志愿者在10月1號至10月5號期間參加社區(qū)服務工作.
(1)若每名志愿者在這5天中任選一天參加社區(qū)服務工作,且各志愿者的選擇互不影響,求3名志愿者恰好連續(xù)3天參加社區(qū)服務工作的概率;
(2)若每名志愿者在這5天中任選兩天參加社區(qū)服務工作,且各志愿者的選擇互不影響,記表示這3名志愿者在10月1號參加社區(qū)服務工作的人數(shù),求隨機變量的分布列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), .
(1)證明: ;
(2)根據(jù)(1)證明: .
(B)已知函數(shù), .
(1)用分析法證明: ;
(2)證明: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校100名學生其中考試語文成績的頻率分布直方圖所示,其中成績分組區(qū)間是:
.
(1)求圖中的值;
(2)根據(jù)頻率分布直方圖,估計這100名學生語文成績的平均分;
(3)若這100名學生語文某些分數(shù)段的人數(shù)與數(shù)學成績相應分數(shù)段的人數(shù)之比如下表所示,
求數(shù)學成績在之外的人數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=
(1) 判別函數(shù)f(x)的奇偶性;
(2) 判斷函數(shù)f(x)的單調(diào)性,并根據(jù)函數(shù)單調(diào)性的定義證明你的判斷正確;
(3) 求關于x的不等式f(1-x2)+f(2x+2)<0的解集.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元,該建筑物每年的能源消耗費用 (單位:萬元)與隔熱層厚度 (單位: )滿足關系,若不建隔熱層,每年能源消耗費用為8萬元.設為隔熱層建造費用與20年的能源消耗費用之和.
(1)求的值及的表達式;
(2)隔熱層修建多厚時,總費用達到最小,并求最小值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某電視臺在一次對收看文藝節(jié)目和新聞節(jié)目觀眾的抽樣調(diào)查中,隨機抽取了100名電視觀眾,相關的數(shù)據(jù)如下表所示:
文藝節(jié)目 | 新聞節(jié)目 | 總計 | |
20至40歲 | 40 | 18 | 58 |
大于40歲 | 15 | 27 | 42 |
總計 | 55 | 45 | 100 |
(1)用分層抽樣方法在收看新聞節(jié)目的觀眾中隨機抽取5名,大于40歲的觀眾應該抽取幾名?
(2)在上述抽取的5名觀眾中任取2名,求恰有1名觀眾的年齡為20至40歲的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com