球的半徑為2,它的內(nèi)接圓柱的底面半徑為1,則圓柱的側(cè)面積為(  )
A、2
3
π
B、4
3
π
C、12π
D、24π
考點(diǎn):球內(nèi)接多面體,棱柱、棱錐、棱臺(tái)的體積
專題:計(jì)算題,空間位置關(guān)系與距離
分析:求出內(nèi)接圓柱的高,再求圓柱的側(cè)面積.
解答: 解:∵球的半徑為2,它的內(nèi)接圓柱的底面半徑為1,
∴內(nèi)接圓柱的高為2
4-1
=2
3

∴圓柱的側(cè)面積為2π×1×2
3
=4
3
π.
故選:B.
點(diǎn)評(píng):本題考查圓柱的側(cè)面積,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將二進(jìn)制數(shù)1101化為十進(jìn)制數(shù)為( 。
A、10B、11C、12D、13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b是兩條直線,α,β是兩個(gè)平面,則下列說(shuō)法中正確的是( 。
A、若a∥b,b∥α,則a∥α
B、若a⊥b,b⊥α,則a⊥α
C、若α∥β,a?α,則a∥β
D、若α⊥β,a?α,則a⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(2-a)(x-1)-2lnx,g(x)=xe1-x.(a∈R,e=2.71828…)
(Ⅰ)當(dāng)a=1時(shí),求f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在區(qū)間(0,
1
2
)
無(wú)零點(diǎn),求a的最小值;
(Ⅲ)若對(duì)任意給定的x0∈(0,e],在(0,e]上總存在兩個(gè)不同的xi(i=1,2)使得f(xi)=g(x0)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.
(1)若A,B,C成等差數(shù)列,且AB=2,AC=2
3
,求△ABC的面積;
(2)若a,b,c成等比數(shù)列,且c=2a,求cos B的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(ax2+bx+c)ex在x=1處取極值,且在點(diǎn)(0,f(0))處的切線方程為4x-y+5=0
(1)求a,b,c的值
(2)求函數(shù)f(x)的單調(diào)區(qū)間,并指出f(x)在x=1處取值是極大值還是極小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知符號(hào)函數(shù)sgnx=
1,x>0
0,x=0
-1,x<0
,則不等式(x2-2)•sgnx>1的解集是(  )
A、(-1,1)∪(
3
,+∞)
B、(-1,0)∪(
3
,+∞)
C、(-∞,
3
]∪(
3
,+∞)
D、(-∞,-
3
)∪(-1,1)∪(
3
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱柱ABC-A1B1C1中,底面為正三角形,AA1⊥平面ABC,D,E,F(xiàn)分別為BC,B1C1,A1B1的中點(diǎn).
(1)求證:BC⊥A1D;
(2)求證:平面BEF∥平面DA1C1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若數(shù)據(jù)組k1,k2,…,k8的平均數(shù)為4,方差為2,則3k1+2,3k2+2,…,3k8+2的平均數(shù)為
 
,方差為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案