3.極坐標(biāo)方程(ρ-3)(θ-$\frac{π}{2}$)=0(ρ≥0)表示的圖形是( 。
A.兩個圓B.一條直線和一條射線
C.兩條直線D.一個圓和一條射線

分析 極坐標(biāo)方程能轉(zhuǎn)化為x2+y2=9或y軸正半軸,從而得到極坐標(biāo)方程(ρ-3)(θ-$\frac{π}{2}$)=0(ρ≥0)表示的圖形是一個圓和一條射線.

解答 解:∵(ρ-3)(θ-$\frac{π}{2}$)=0(ρ≥0),
∴ρ=3或θ=$\frac{π}{2}$,
∴x2+y2=9或y軸正半軸,
∴極坐標(biāo)方程(ρ-3)(θ-$\frac{π}{2}$)=0(ρ≥0)表示的圖形是一個圓和一條射線.
故選:D.

點(diǎn)評 本題考查極坐標(biāo)方程表示的圖形的判斷,是基礎(chǔ)題,解題時要認(rèn)真審題,注意極坐標(biāo)方程與直角坐標(biāo)方程的相互轉(zhuǎn)化.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.通過市場調(diào)查,得到某產(chǎn)品的資金投入x(萬元)與獲得的利潤y(萬元)的數(shù)據(jù)如表所示:
 投入資金x 1 2 3 4 5
 利潤y 2 3 5 6 9
(1)根據(jù)如表提供的數(shù)據(jù),用最小二乘法求線性回歸直線方程$\stackrel{∧}{y}$=bx+a;
(2)若投入資金10萬元,試估計(jì)獲得的利潤有多少萬元?
參考公式:b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\overline{{x}^{2}}}$,a=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)f(x)=cos2x-2cos2$\frac{x}{2}$在[0,π]上的單調(diào)遞增區(qū)間是[$\frac{π}{3}$,π].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=2sin(x+$\frac{θ}{2}$)•cos(x+$\frac{θ}{2}$)+2$\sqrt{3}$cos2(x+$\frac{θ}{2}$)-$\sqrt{3}$.
(1)若0≤θ≤π,求使f(x)為偶函數(shù)的θ的值;
(2)在(1)的條件下,若直線y=m與函數(shù)y=|f(x)|($\frac{π}{12}$≤x≤$\frac{5π}{6}$)的圖象有且僅有兩個公共點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知曲線C的參數(shù)方程為$\left\{{\begin{array}{l}{x=2cosα-1}\\{y=\sqrt{3}sinα}\end{array}}\right.$(α為參數(shù)),以直角坐標(biāo)系原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求曲線C的極坐標(biāo)方程;
(Ⅱ)若直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=t}\\{y=\sqrt{3}t}\end{array}}\right.$,其中t為參數(shù),求直線l被曲線C截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)[x]表示不大于實(shí)數(shù)x的最大整數(shù),函數(shù)f(x)=$\left\{\begin{array}{l}{(lnx)^{2}-[lnx]-2,x>0}\\{\sqrt{-x}+\frac{1}{2}x-a,x≤0}\end{array}\right.$,若f(x)有且僅有4個零點(diǎn),則實(shí)數(shù)a的取值范圍為( 。
A.a<0或a=$\frac{1}{2}$B.0≤a<$\frac{1}{2}$C.a>$\frac{1}{2}$D.不存在實(shí)數(shù)a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知$\underset{lim}{n→∞}$(5n-$\sqrt{an^2-bn+c}$=2,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)y=$\frac{1}{2}$sin2x圖象的振幅為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分圖象,如圖所示.
(1)求函數(shù)解析式;(2)若方程f(x)=m在[-$\frac{π}{12}$,$\frac{13π}{12}$]有兩個不同的實(shí)根,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案