方程ln(x+1)-
2
x
=0,(x>0)的根存在的大致區(qū)間是(  )
A、(0,1)
B、(1,2)
C、(2,e)
D、(3,4)
考點:函數(shù)零點的判定定理
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:令f(x)=ln(x+1)-
2
x
,得出f(1)f(2)<0,從而得出答案.
解答: 解:令f(x)=ln(x+1)-
2
x
,
而f(1)=ln2-2<0,f(2)=ln3-1>0,
∴方程ln(x+1)-
2
x
=0,(x>0)的根存在的大致區(qū)間是(1,2),
故選:B.
點評:他考查了函數(shù)的零點問題,特殊值代入是方法之一,本題屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-3x2-3x+4b2+
9
4
,b>0,x∈[-b,b],且f(x)的最大值為7,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x-1|,g(x)=-|x+3|+a,a∈R
(1)解關(guān)于x的不等式g(x)>6;
(2)若函數(shù)y=2f(x)的圖象恒在函數(shù)y=g(x)的上方,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前n項和為Sn(n∈N*),且an=2n+λ,若數(shù)列{Sn}在n≥7時為遞增數(shù)列,則實數(shù)λ的取值范圍為(  )
A、(-15,+∞)
B、[-15,+∞)
C、[-16,+∞)
D、(-16,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log2(4x+1)+kx(k∈R)是偶函數(shù).
(1)求k的值;
(2)設(shè)函數(shù)g(x)=log2(a•2x-
4
3
a),其中a>0若函數(shù)f(x)與g(x)的圖象有且只有一個交點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一列火車在平直的鐵軌上行駛,由于遇到緊急情況,火車以速度v(t)=5-t+
55
1+t
(t的單位:s,v的單位:m/s)緊急剎車至停止.則從開始緊急剎車至火車完全停止所經(jīng)過的時間等于
 
(s);緊急剎車后火車運行的路程等于
 
(m).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù),f(x)=|x-a|
(Ⅰ)當(dāng)a=2,解不等式,f(x)≥5-|x-1|;
(Ⅱ)若f(x)≤1的解集為[0,2],
1
m
+
1
2n
=a(m>0,n>0),求證:m+2n≥4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l的參數(shù)方程為
x=2t
y=1+bt
(t為參數(shù)),在以原點為極點,以x軸正半軸為極軸的極坐標(biāo)系中,曲線C的方程為ρ=2cosθ,若直線l平分曲線C所圍成圖形的面積,則b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x+5,(x≤-1)
x2,(-1<x<1)
2x,(x≥1)
,
①畫出f(x)的圖象,并指出函數(shù)f(x)的定義域和值域;
②若f(a)=
1
2
,求a的值.

查看答案和解析>>

同步練習(xí)冊答案