已知等差數(shù)列{an}的前n項(xiàng)和為Sn(n∈N*),且an=2n+λ,若數(shù)列{Sn}在n≥7時(shí)為遞增數(shù)列,則實(shí)數(shù)λ的取值范圍為(  )
A、(-15,+∞)
B、[-15,+∞)
C、[-16,+∞)
D、(-16,+∞)
考點(diǎn):數(shù)列的函數(shù)特性
專題:等差數(shù)列與等比數(shù)列
分析:Sn=
n(a1+an)
2
n(2+λ+2n+λ)
2
=n2+(λ+1)n,利用函數(shù)的單調(diào)性,列不等式即可求解.
解答: 解:∵an=2n+λ,∴a1=2+λ,
∴Sn=
n(a1+an)
2
=
n(2+λ+2n+λ)
2
=n2+(λ+1)n,又因?yàn)閚∈N
由二次函數(shù)的性質(zhì)和n∈N
可知-
λ+1
2
<7.5即可滿足數(shù)列{Sn}為遞增數(shù)列,
解不等式可得λ>-16
故選:D
點(diǎn)評(píng):本題考查了等差數(shù)列的性質(zhì),結(jié)合函數(shù)的單調(diào)性綜合解決.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)有4名教師參加說課比賽,共有4道備選題目,若每位教師從中有放回地隨機(jī)選出一道題目進(jìn)行說課,其中恰有一道題目沒有被這4位教師選中的情況有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)求對(duì)稱軸為坐標(biāo)軸,離心率e=
2
3
,短軸長為8
5
的橢圓的標(biāo)準(zhǔn)方程.
(2)已知雙曲線C1與雙曲線C2
y2
4
-
x2
9
=1有共同的漸近線,且經(jīng)過點(diǎn)M(
9
2
,-1),求雙曲線C1的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:f(x)=(a-2)x2+2(a-2)x-4,
(1)當(dāng)x∈R時(shí),恒有f(x)<0,求a的取值范圍;
(2)當(dāng)x∈[1,3)時(shí),恒有f(x)<0,求a的取值范圍;
(3)當(dāng)x∈(1,3)時(shí),恰有f(x)<mx-7成立,求a,m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2+
2x-x2
,則
2
0
f(x)dx=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)在x=x0處可導(dǎo),且f(0)=0,求
lim
x→0
f(tx)-f(-tx)
x
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程ln(x+1)-
2
x
=0,(x>0)的根存在的大致區(qū)間是(  )
A、(0,1)
B、(1,2)
C、(2,e)
D、(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明命題:“f(x)=ex+
1
ex
在(0,+∞)上是增函數(shù)”,現(xiàn)給出的證法如下:
因?yàn)閒(x)=ex+
1
ex
,所以f′(x)=ex-
1
ex
,
因?yàn)閤>0,所以ex>1,0<
1
ex
<1,
所以ex-
1
ex
>0,即f′(x)>0,
所以f(x)在(0,+∞)上是增函數(shù),使用的證明方法是(  )
A、綜合法B、分析法
C、反證法D、以上都不是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知圓C1的參數(shù)方程為
x=cosφ
y=sinφ
(φ為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C2的極坐標(biāo)方程為ρ=2
2
cos(θ-
π
4
).
(Ⅰ)將圓C1的參數(shù)方程他為普通方程,將圓C2的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)圓C1,C2是否相交,若相交,請(qǐng)求出公共弦的長;若不相交,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案