2.已知圓O:x2+y2=2,若|$\overrightarrow{OC}$|=1,在圓O上存在A,B兩點(diǎn),有$\overline{CA}$•$\overrightarrow{CB}$=0成立,則|$\overrightarrow{AB}$|的取值范圍是[$\sqrt{3}-1$,$\sqrt{3}+1$].

分析 由題意:|$\overrightarrow{OC}$|=1,看成是以圓心(0,0)半徑為r=1的圓,在圓O上存在A,B兩點(diǎn),有$\overline{CA}$•$\overrightarrow{CB}$=0成立,即過(guò)圓x2+y2=1同一點(diǎn)的兩條直線相互垂直圓x2+y2=2交點(diǎn)A,B兩點(diǎn),即可求AB的距離.

解答 解:由題意:|$\overrightarrow{OC}$|=1,看成是以圓心(0,0)半徑為r=1的圓,在圓O上存在A,B兩點(diǎn),有$\overline{CA}$•$\overrightarrow{CB}$=0成立,即過(guò)圓x2+y2=1同一點(diǎn)的兩條直線相互垂直圓x2+y2=2交點(diǎn)A,B,A1,B1點(diǎn),如圖所示,|AB|為最大值,|A1B1|為最小值.C為圓上的動(dòng)點(diǎn),設(shè)C(1,0),可得直線AB1的方程為y=-x+1,
直線A1B的方程為y=x-1,
圓x2+y2=2交點(diǎn)A,B,A1,B1點(diǎn),
聯(lián)立$\left\{\begin{array}{l}{y=-x+1}\\{{x}^{2}+{y}^{2}=2}\end{array}\right.$
解得A($\frac{1-\sqrt{3}}{2}$,$\frac{\sqrt{3}+1}{2}$),B1($\frac{1+\sqrt{3}}{2}$,$\frac{1-\sqrt{3}}{2}$)
根據(jù)對(duì)稱性:
|AB|的最大值$\sqrt{3}+1$,
|A1B1|的最小值$\sqrt{3}-1$.
故答案為:[$\sqrt{3}-1$,$\sqrt{3}+1$]

點(diǎn)評(píng) 本題考查了向量垂直與數(shù)量積的關(guān)系、向量的坐標(biāo)運(yùn)算,考查了數(shù)形結(jié)合的思想方法,利用特殊點(diǎn)求解.屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若數(shù)列{an}滿足:${a_1}=\frac{1}{3}$,${a_n}=1-\frac{1}{{{a_{n-1}}}}$,n≥2且n∈N,則a2016=( 。
A.$\frac{1}{3}$B.$-\frac{2}{3}$C.$\frac{3}{2}$D.$-\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.函數(shù)y=$\sqrt{2sinx+\sqrt{3}}$的定義域是( 。
A.[$\frac{π}{6}$+2kπ,$\frac{5π}{6}$+2kπ],k∈ZB.[-$\frac{π}{6}$+2kπ,$\frac{7π}{6}$+2kπ],k∈Z
C.[$\frac{π}{3}$+2kπ,$\frac{2π}{3}$+2kπ],k∈ZD.[-$\frac{π}{3}$+2kπ,$\frac{4π}{3}$+2kπ],k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.某中學(xué)生心理咨詢中心服務(wù)電話接通率為$\frac{3}{4}$,某班3名同學(xué)商定明天分別就同一問(wèn)題詢問(wèn)該服務(wù)中心,且每人只撥打一次,
求(1)他們中成功咨詢的人數(shù)為X的分布列及期望;
(2)至少一人撥通電話的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)函數(shù)f(x)=lnx+x2-ax(a∈R)
(Ⅰ)若函數(shù)f(x)在區(qū)間[${\frac{1}{4}$,2]上存在單調(diào)增區(qū)間,求實(shí)數(shù)a的取值范圍;
(Ⅱ)設(shè)g(x)=f(x)+2ln$\frac{ax+2}{{6\sqrt{x}}}$,對(duì)于任意a∈(2,4),總存在x∈[$\frac{3}{2}$,2],使g(x)>k(4-a2)成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)n?N+,則5${C}_{n}^{1}$+52${C}_{n}^{2}$+53${C}_{n}^{3}$+…+5n${C}_{n}^{n}$除以7的余數(shù)為( 。
A.0或5B.1或3C.4或6D.0或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知:ω 2+ω+1=0,則ω2016的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知拋物線C:y2=2px(p>0),拋物線的焦點(diǎn)為F,過(guò)點(diǎn)F的直線交C于A,B兩點(diǎn),線段AB的垂直平分線交x軸于點(diǎn)R.
(I)若對(duì)數(shù)函數(shù)y=lgx圖象經(jīng)過(guò)點(diǎn)F,求拋物線C方程;
(II)$\frac{|AB|}{|BF|}$恒為定值嗎?如果是,求出該值,如果不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=log2(sin($\frac{π}{3}$x+$\frac{π}{3}$))
(1)求函數(shù)的定義域與單調(diào)遞減區(qū)間;
(2)令$h(x)=sin(\frac{π}{3}x+\frac{π}{3})$,求h(1)+h(3)+h(5)+h(7)+…+h(2013)+h(2015)的值;
(3)g(x)=4f(x)+2f(x)+1,求g(x)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案