設a>2,則a+
1
a-2
的最小值是
 
考點:基本不等式
專題:不等式的解法及應用
分析:變形利用基本不等式即可得出.
解答: 解:∵a>2,∴a-2>0.
∴a+
1
a-2
=(a-2)+
1
a-2
+2≥2
(a-2)•
1
a-2
+2
=4,當且僅當a=3時取等號.
故答案為:4.
點評:本題考查了基本不等式的應用,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知{an}為公差不為零的等差數(shù)列,首項a1=a,{an}的部分項ak1、ak2、…、akn恰為等比數(shù)列,且k1=1,k2=2,k3=5.
(1)求數(shù)列{an}的通項公式an(用a表示);
(2)若數(shù)列{kn}的前n項和為Sn,求Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,以橢圓C的左頂點T為圓心作圓T:(x+2)2+y2=r2(r>0),設圓T與橢圓C交于點M與點N.
(1)求橢圓C的標準方程;
(2)求
TM
TN
的最小值,并求此時圓T的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直角坐標平面上4個點A(1,2),B(3,1),C(2,3),D(4,0)到直線y=kx的距離的平方和為S,當k變化,S的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

{1,2}⊆A⊆{1,2,3,4,5,6},且4∉A,這樣的A有
 
個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

動點P(x,y)(x≥0)到點F(1,0)的距離與點P到y(tǒng)軸的距離差為1,則點P的軌跡方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=f(x)(x≠0)是奇函數(shù),且當x∈R+時是增函數(shù),若f(1)=0,則不等式f[x(x-
1
2
)]
<0的解集為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在復平面上把方程x10=1的根對應的點的集合記為M,以M中的點為頂點的三角形中共有
 
個直角三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果方程
x2
|m|-1
-
y2
m-2
=1表示雙曲線,那么實數(shù)m的取值范圍是
 

查看答案和解析>>

同步練習冊答案