9.已知數(shù)列{an}滿足遞推關系:an+1=$\frac{{a}_{n}}{{a}_{n}+1}$,a1=$\frac{1}{2}$,則a2017=( 。
A.$\frac{1}{2016}$B.$\frac{1}{2017}$C.$\frac{1}{2018}$D.$\frac{1}{2019}$

分析 an+1=$\frac{{a}_{n}}{{a}_{n}+1}$,a1=$\frac{1}{2}$,可得$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=1.再利用等差數(shù)列的通項公式即可得出.

解答 解:∵an+1=$\frac{{a}_{n}}{{a}_{n}+1}$,a1=$\frac{1}{2}$,∴$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=1.
∴數(shù)列$\{\frac{1}{{a}_{n}}\}$是等差數(shù)列,首項為2,公差為1.
∴$\frac{1}{{a}_{2017}}$=2+2016=2018.
則a2017=$\frac{1}{2018}$.
故選:C.

點評 本題考查了數(shù)列遞推關系、等差數(shù)列的通項公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

19.某地區(qū)擬建立一個藝術搏物館,采取競標的方式從多家建筑公司選取一家建筑公司,經過層層篩選,甲、乙兩家建筑公司進入最后的招標.現(xiàn)從建筑設計院聘請專家設計了一個招標方案:兩家公司從6個招標總是中隨機抽取3個總題,已知這6個招標問題中,甲公司可正確回答其中4道題目,而乙公司能正面回答每道題目的概率均為$\frac{2}{3}$,甲、乙兩家公司對每題的回答都是相獨立,互不影響的.
(1)求甲、乙兩家公司共答對2道題目的概率;
(2)請從期望和方差的角度分析,甲、乙兩家哪家公司競標成功的可能性更大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.如圖,已知O為△ABC的外心,角A、B、C的對邊分別為a、b、c.
(1)若5$\overrightarrow{OA}$+4$\overrightarrow{OB}$+3$\overrightarrow{OC}$=$\overrightarrow{0}$,求cos∠BOC的值;
(2)若$\overrightarrow{CO}$•$\overrightarrow{AB}$=$\overrightarrow{BO}$•$\overrightarrow{CA}$,求$\frac{^{2}+{c}^{2}}{{a}^{2}}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=(x-2)ex-$\frac{a}{2}$x2,其中a∈R,e為自然對數(shù)的底數(shù)
(Ⅰ)函數(shù)f(x)的圖象能否與x軸相切?若能與x軸相切,求實數(shù)a的值;否則,請說明理由;
(Ⅱ)若函數(shù)y=f(x)+2x在R上單調遞增,求實數(shù)a能取到的最大整數(shù)值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知正三棱柱ABC-A1B1C1的頂點A1,B1,C1在同一球面上,且平面ABC經過球心,若此球的表面積為4π,則該三棱柱的側面積的最大值為( 。
A.$\frac{\sqrt{3}}{2}$B.$\sqrt{3}$C.$\frac{3\sqrt{3}}{2}$D.3$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.函數(shù)f(x)=$\left\{\begin{array}{l}{{ax}^{2}+x-1(x>2)}\\{-x+1(x≤2)}\end{array}\right.$是R上的單調遞減函數(shù),則實數(shù)a的取值范圍是(-∞,-$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.對于橢圓$\frac{x^2}{4}+\frac{y^2}{3}=1$,下面說法正確的是( 。
A.長軸長為2B.短軸長為3C.離心率為$\frac{1}{2}$D.焦距為1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.在△ABC中,角A,B,C所對的邊分別為a,b,c,若acosA=bsinb,且$B>\frac{π}{2}$,則sinA+sinC的最大值是$\frac{9}{8}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知f(x)=lnx+$\frac{1}{8}$x2
(1)求曲線f(x)在x=1處的切線方程;
(2)設P為曲線f(x)上的點,求曲線C在點P處切線的斜率的最小值及傾斜角α的取值范圍.

查看答案和解析>>

同步練習冊答案