20.如圖,已知O為△ABC的外心,角A、B、C的對(duì)邊分別為a、b、c.
(1)若5$\overrightarrow{OA}$+4$\overrightarrow{OB}$+3$\overrightarrow{OC}$=$\overrightarrow{0}$,求cos∠BOC的值;
(2)若$\overrightarrow{CO}$•$\overrightarrow{AB}$=$\overrightarrow{BO}$•$\overrightarrow{CA}$,求$\frac{^{2}+{c}^{2}}{{a}^{2}}$的值.

分析 (1)根據(jù)5$\overrightarrow{OA}$+4$\overrightarrow{OB}$+3$\overrightarrow{OC}$=$\overrightarrow{0}$,采用兩邊平方,構(gòu)造出$\overrightarrow{OB}•\overrightarrow{OC}$,即可cos∠BOC;
(2)利用向量的加減運(yùn)用,消去$\overrightarrow{AB}$和$\overrightarrow{CA}$.根據(jù)正弦定理求解.

解答 解:(1)∵5$\overrightarrow{OA}$+4$\overrightarrow{OB}$+3$\overrightarrow{OC}$=$\overrightarrow{0}$,即4$\overrightarrow{OB}$+3$\overrightarrow{OC}$=-5$\overrightarrow{OA}$,
兩邊平方,可得:4R2+9R2+24$\overrightarrow{OB}$$\overrightarrow{OC}$=25R2
得24$\overrightarrow{OB}$•$\overrightarrow{OC}$=0
即|$\overrightarrow{OB}$|•|$\overrightarrow{OC}$|cos∠BOC=0,
∴cos∠BOC=0.
(2)∵$\overrightarrow{CO}$•$\overrightarrow{AB}$=$\overrightarrow{BO}$•$\overrightarrow{CA}$,
∴$\overrightarrow{CO}$•($\overrightarrow{OB}-\overrightarrow{OA}$)=$\overrightarrow{BO}$•($\overrightarrow{OA}-\overrightarrow{OC}$),即$-\overrightarrow{CO}•\overrightarrow{OB}+\overrightarrow{OC}•\overrightarrow{OA}=-\overrightarrow{OB}•\overrightarrow{OA}+\overrightarrow{OB}•\overrightarrow{OC}$
可得:-R2cos2A+R2cos2B=-R2cos2C+R2cos2A
∴2cos2A=cos2C+cos2B,
即2(1-2sin2A)=2-(2sin2B+2sin2C),
2sin2A=-sin2B+sin2C,
可得2a2=-b2+c2
那么:$\frac{^{2}+{c}^{2}}{{a}^{2}}$=2.

點(diǎn)評(píng) 本題考查了向量的運(yùn)算和正弦定理的計(jì)算,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-2+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.(t$為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為$ρ=\sqrt{6}$.
(1)寫出直線l的普通方程和曲線C1的參數(shù)方程;
(2)若將曲線C1上各點(diǎn)的橫坐標(biāo)縮短為原來的$\frac{{\sqrt{6}}}{6}$倍,縱坐標(biāo)縮短為原來的$\frac{{\sqrt{2}}}{2}$倍,得到曲線C2,設(shè)點(diǎn)P是曲線C2上任意一點(diǎn),求點(diǎn)P到直線l距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知雙曲線Γ:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的一條漸近線為l,圓C:(x-a)2+y2=8與l交于A,B兩點(diǎn),若△ABC是等腰直角三角形,且$\overrightarrow{OB}=5\overrightarrow{OA}$(其中O為坐標(biāo)原點(diǎn)),則雙曲線Γ的離心率為(  )
A.$\frac{{\sqrt{13}}}{3}$B.$\frac{{2\sqrt{13}}}{3}$C.$\frac{{\sqrt{13}}}{5}$D.$\frac{{2\sqrt{13}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)衡量,并依據(jù)質(zhì)量指標(biāo)值劃分等級(jí)如表:
質(zhì)量指標(biāo)值mm<185185≤m<205M≥205
等級(jí)三等品二等品一等品
從某企業(yè)生產(chǎn)的這種產(chǎn)品中抽取200件,檢測(cè)后得到如下的頻率分布直方圖:
(1)根據(jù)以上抽樣調(diào)查的數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)這種產(chǎn)品符合“一、二等品至少要占到全部產(chǎn)品的92%的規(guī)定”?
(2)在樣本中,按產(chǎn)品等級(jí)用分層抽樣的方法抽取8件,再從這8件產(chǎn)品中隨機(jī)抽取4件,求抽取的4件產(chǎn)品中,一、二、三等品都有的概率;
(3)該企業(yè)為提高產(chǎn)品的質(zhì)量,開展了“質(zhì)量提升月”活動(dòng),活動(dòng)后再抽樣檢測(cè),產(chǎn)品質(zhì)量指標(biāo)值X近似滿足X~N(218,140),則“質(zhì)量提升月”活動(dòng)后的質(zhì)量指標(biāo)值的均值比活動(dòng)前大約提升了多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.公差不為0的等差數(shù)列{an}的部分項(xiàng)${a}_{{k}_{1}}$,${a}_{{k}_{2}}$,${a}_{{k}_{3}}$,…構(gòu)成等比數(shù)列{${a}_{{k}_{n}}$},且k1=1,k2=2,k3=6,則k5為( 。
A.86B.88C.90D.92

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.某校組織10名學(xué)生參加高校的自主招生活動(dòng),其中6名男生,4名女生,根據(jù)實(shí)際要從10名同學(xué)中選3名參加A校的自主招生,則其中恰有1名女生的概率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.四邊形ABCD中,AD∥BC,AB=2,AD=1,A=$\frac{2π}{3}$.
(1)求sin∠ADB;
(2)若sin∠BDC=$\frac{2π}{3}$,求四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知數(shù)列{an}滿足遞推關(guān)系:an+1=$\frac{{a}_{n}}{{a}_{n}+1}$,a1=$\frac{1}{2}$,則a2017=( 。
A.$\frac{1}{2016}$B.$\frac{1}{2017}$C.$\frac{1}{2018}$D.$\frac{1}{2019}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.高二(7)班參加冬令營的6位同學(xué)排成一排照相,甲乙必須相鄰且甲、乙、丙必須從左到右的排法種數(shù)為(  )
A.120B.60C.36D.72

查看答案和解析>>

同步練習(xí)冊(cè)答案