11.sin480°=( 。
A.$-\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.$-\frac{1}{2}$D.$\frac{1}{2}$

分析 直接利用誘導公式化簡求解即可.

解答 解:sin480°=sin120°=$\frac{\sqrt{3}}{2}$.
故選:B.

點評 本題考查誘導公式的應用,特殊角的三角函數(shù)值的求法,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

1.已知函數(shù)f(x)=$\frac{lnx+(x-t)^{2}}{x}$,若對任意的x∈[1,2],f′(x)•x+f(x)>0恒成立,則實數(shù)t的取值范圍是( 。
A.(-∞,$\sqrt{2}$]B.(-∞,$\frac{3}{2}$)C.(-∞,$\frac{9}{4}$]D.[$\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.隨機變量X~B(n,$\frac{1}{4}$),E(X)=3,則n=( 。
A.8B.12C.16D.20

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.如圖,已知動直線l過點$P(0,\frac{1}{2})$,且與圓O:x2+y2=1交于A、B兩點.
(1)若直線l的斜率為$\sqrt{3}$,求△OAB的面積;
(2)若直線l的斜率為0,點C是圓O上任意一點,求CA2+CB2的取值范圍;
(3)是否存在一個定點Q(不同于點P),對于任意不與y軸重合的直線l,都有PQ平分∠AQB,若存在,求出定點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.一元二次不等式-x2+x+2>0的解集是(  )
A.{x|x<-1或x>2}B.{x|x<-2或x>1}C.{x|-1<x<2}D.{x|-2<x<1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.在等比數(shù)列{an}中,已知公比q=$\frac{1}{2}$,S5=-$\frac{31}{4}$,則a1=-4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.下列函數(shù)中,在其定義域內(nèi)既是奇函數(shù)又是增函數(shù)的是( 。
A.y=x3+xB.y=-$\frac{1}{x}$C.y=sinxD.$y={({\frac{1}{2}})^x}-{2^x}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.不等式x2-3x-10>0的解集是(  )
A.{x|-2≤x≤5}B.{x|x≥5或x≤-2}C.{x|-2<x<5}D.{x|x>5或x<-2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,梯形ABEF中,AF∥BE,AB⊥AF,且AB=BC=AD=DF=2CE=2,沿DC將梯形DCFE折起,使得平面DCFE⊥平面ABCD.
(1)證明:AC∥平面BEF;
(2)求三棱錐D-BEF的體積;
(3)求直線AF與平面BDF所求的角.

查看答案和解析>>

同步練習冊答案