【題目】國際奧委會于2017年9月15日在秘魯利馬召開130次會議決定2024年第33屆奧運會舉辦地,目前德國漢堡,美國波士頓等申辦城市因市民擔心賽事費用超支而相繼退出,某機構(gòu)為調(diào)查我國公民對申辦奧運會的態(tài)度,選了100位居民調(diào)查結(jié)果統(tǒng)計如下:

支持

不支持

合計

年齡不大于50歲

_______

_______

80

年齡大于50歲

10

_______

_______

合計

_______

70

100

(1)根據(jù)已知數(shù)據(jù),把表格填寫完整;

(2)是否有95%的把握認為年齡與支持申辦奧運有關(guān)?

附表:,

0.100

0.050

0.025

0.010

2.706

3.814

5.024

6.635

【答案】(1)見解析(2)有95%的把握認為年齡與支持申辦奧運有關(guān)

【解析】分析:(1)由題意完成題中的列聯(lián)表即可;

(2)由題意計算可得,則有95%的把握認為年齡與支持申辦奧運有關(guān).

詳解:(1)

支持

不支持

合計

年齡不大于50

20

60

80

年齡大于50

10

10

20

合計

30

70

100

(2)

可以判斷,有95%的把握認為年齡與支持申辦奧運有關(guān).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】心理學家發(fā)現(xiàn)視覺和空間能力與性別有關(guān),某高中數(shù)學興趣小組為了驗證這個結(jié)論,從興趣小組中抽取50名同學(男3020),給所有同學幾何題和代數(shù)題各一題,讓各位同學自由選擇一道題進行解答.選題情況如下表:(單位:人)

幾何題

代數(shù)題

合計

男同學

22

8

30

女同學

8

12

20

合計

30

20

50

(1)能否據(jù)此判斷有的把握認為視覺和空間能力與性別有關(guān)?

(2)以上列聯(lián)表中女生選做幾何題的頻率作為概率,從該校1500名女生中隨機選6名女生,記6名女生選做幾何題的人數(shù)為,求的數(shù)學期望和方差.

附表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知).

(1)當時,求關(guān)于的不等式的解集;

(2)若fx)是偶函數(shù),求k的值;

(3)在(2)條件下,設(shè),若函數(shù)的圖象有公共點,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某種藥物在血液中以每小時的比例衰減,現(xiàn)給某病人靜脈注射了該藥物2500mg,設(shè)經(jīng)過x個小時后,藥物在病人血液中的量為ymg

x的關(guān)系式為______;

當該藥物在病人血液中的量保持在1500mg以上,才有療效;而低于500mg,病人就有危險,要使病人沒有危險,再次注射該藥物的時間不能超過______小時精確到

參考數(shù)據(jù):,,,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下面說法中錯誤的是( )

A. 經(jīng)過定點的直線都可以用方程表示

B. 經(jīng)過定點的直線都可以用方程表示

C. 經(jīng)過定點的直線都可以用方程表示

D. 不經(jīng)過原點的直線都可以用方程表示

E. 經(jīng)過任意兩個不同的點,的直線都可以用方程 表示

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,AC⊥AD.底面ABCD為梯形,AB∥DC,AB⊥BC,PA=AB=BC=3,點E在棱PB上,且PE=2EB. (Ⅰ)求證:平面PAB⊥平面PCB;
(Ⅱ)求證:PD∥平面EAC;
(Ⅲ)求平面AEC和平面PBC所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,為兩個不同的平面,,為兩條不同的直線,下列命題中正確的是( )

①若,,則 ②若,,則

③若,,,則 ④若,,,則.

A. ①③ B. ①④ C. ②③ D. ②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在圓x2+y2﹣4x+2y=0內(nèi),過點E(1,0)的最長弦和最短弦分別是AC和BD,則四邊形ABCD的面積為(
A.
B.6
C.
D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某村莊擬修建一個無蓋的圓柱形蓄水池(不計厚度).設(shè)該蓄水池的底面半徑為r米,高為h米,體積為V立方米.假設(shè)建造成本僅與表面積有關(guān),側(cè)面的建造成本為100元/平方米,底面的建造成本為160元/平方米,該蓄水池的總建造成本為12 000π元(π為圓周率).

(1)將V表示成r的函數(shù)V(r),并求該函數(shù)的定義域;

(2)討論函數(shù)V(r)的單調(diào)性,并確定rh為何值時該蓄水池的體積最大.

查看答案和解析>>

同步練習冊答案