11.在△ABC 中,A=30°,a=3,b=4,那么滿足條件的△ABC 個數(shù)有( 。
A.不存在B.不能確定C.一個D.兩個

分析 據(jù)余弦定理a2=b2+c2-2bccosA的式子,代入題中數(shù)據(jù)化簡得c2-4$\sqrt{3}$c+7=0,由根的判別式與韋達定理得到該方程有兩個不相等的正實數(shù)根,由此可得△ABC有兩個解.

解答 解:∵在△ABC中,∠A=30°,a=3,b=4,
∴由余弦定理a2=b2+c2-2bccosA,得
9=16+c2-8ccos30°,得c2-4$\sqrt{3}$c+7=0(*)
∵△=(4$\sqrt{3}$)2-4×1×7=20>0,且兩根之和、兩根之積都為正數(shù)
∴方程(*)有兩個不相等的正實數(shù)根,即有兩個邊c滿足題中的條件
由此可得滿足條件的△ABC有兩個解.
故選:D

點評 本題給出三角形的兩條邊和其中一邊的對角,判斷三角形解的個數(shù).著重考查了利用余弦定理解三角形、一元二次方程根的判斷式與韋達定理等知識,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.U={x|x≥-1},A={x|1<x≤3},B={x|2<x≤4},求A∪B,A∩B,A∩(∁UB),B∩(∁UA).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知等差數(shù)列{an}(n∈N*)的前n項和為Sn,且a3=5,S3=9.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)等比數(shù)列{bn}(n∈N*),{bn}的前n項和為Tn,若q>0且b3=a5,T3=13,求Tn
(3)設(shè)bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.△ABC的三邊長分別為|AB|=7,|BC|=5,|CA|=6,則$\overrightarrow{AB}$•$\overrightarrow{BC}$ 的值為(  )
A.19B.14C.-18D.-19

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.給出下列命題:
①函數(shù)y=sin2x偶函數(shù); 
②函數(shù)y=sin2x的最小正周期為π;
③函數(shù)y=ln(x+1)沒有零點;  
④函數(shù)y=ln(x+1)在區(qū)間(-1,0)上是增函數(shù).
其中正確的命題是②④(只填序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=2x,等差數(shù)列{an}的公差為2.若f(a2+a4+a6+a8+a10)=4,則log2[f(a1)•f(a2)•f(a3)•…•f(a10)]=( 。
A.8B.4C.-6D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知三棱錐P-ABC的頂點都在同一個球面上(球O),且PA=2,PB=PC=$\sqrt{6}$,當(dāng)三棱錐P-ABC的三個側(cè)面的面積之和最大時,該三棱錐的體積與球O的體積的比值是$\frac{3}{16π}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知命題p:?x∈(-∞,0),2x<3x;命題q:?x∈(0,$\frac{π}{2}$),sinx<x,則下列命題為真命題的是( 。
A.p∧qB.p∨(¬q)C.(¬p)∧qD.p∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=2sinxcosx-$\sqrt{3}cos2x({x∈R})$.
(1)若f(a)=$\frac{1}{2}$且$a∈({\frac{5π}{12},\frac{2π}{3}})$,求cos2a;
(2)求曲線y=f(x)在點(0,f(0))處的切線方程;
(3)記函數(shù)f(x)在$x∈[{\frac{π}{4},\frac{π}{2}}]$上的最大值為b,且函數(shù)f(x)在[aπ,bπ](a<b)上單調(diào)遞增,求實數(shù)a的最小值.

查看答案和解析>>

同步練習(xí)冊答案