過點(diǎn)A(7,2)作圓x2+y2+2x-4y-95=0的弦,則弦長的最大值和最小值之差為( 。
A、4B、6C、8D、12
考點(diǎn):直線與圓相交的性質(zhì)
專題:計(jì)算題,直線與圓
分析:圓的方程化為標(biāo)準(zhǔn)方程,求出弦長的最大值為20,最小為與過A的直徑垂直的弦BD,即可得出結(jié)論.
解答: 解:圓x2+y2+2x-4y-95=0,可化為(x+1)2+(y-2)2=100,圓心C(-1,2),半徑為10,
故弦長的最大值為20,最小為與過A的直徑垂直的弦BD,
∵CA=8,
∴BD=2CA=2
100-64
=12,
∴過A點(diǎn)的弦長的最小值與最大值之差為8.
故選:C.
點(diǎn)評(píng):本題考查圓的方程,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對(duì)的邊依次為a,b,c,已知α=bcosC+
3
3
csinB.
(1)求角B;
(2)若b=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=logax(a>0且a≠1)在[
1
3
,9
]上的最小值為-1,最大值為b,且函數(shù)g(x)=
1-b
x
在(-∞,0)上是增函數(shù),則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(2,-1,3),
b
=(-1,4,-2),
c
=(7,7,λ),若
a
,
b
,
c
共面,則實(shí)數(shù)λ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若sin(
π
3
-2x)=
4
5
,則cos(
π
6
+2x)=( 。
A、
3
5
B、
4
5
C、
5
4
D、±
3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=-
1
2
x2+(a+2)x+lnx在(1,+∞)上是減函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A、(-∞,-2]
B、(-3,-1)
C、[-1,0)
D、[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對(duì)本班50人進(jìn)行了問卷調(diào)查得到了下表:
喜愛打籃球不喜愛打籃球合計(jì)
男生19625
女生91625
合計(jì)282250
根據(jù)表中的數(shù)據(jù)及隨機(jī)變量Χ2的公式,算得Χ2≈8.12.臨界值表:
P(χ2≥k)0.1000.0500.0250.0100.0050.001
k2.7063.8415.0246.6357.87910.828
根據(jù)臨界值表,你認(rèn)為喜愛打籃球與性別之間有關(guān)系的把握是( 。
A、97.5%B、99%
C、99.5%D、99.9%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若P為橢圓
x2
25
+
y2
9
=1上一點(diǎn),F(xiàn)1、F2為焦點(diǎn),∠F1PF2=60°,求P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的內(nèi)角A,B,C所對(duì)邊的長分別為a,b,c,且a=bcosC+
3
3
csinB

(1)求B;
(2)若c=1,a=3,AC的中點(diǎn)為D,求BD的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案