5.函數(shù)y=-x2+2x-5的單調(diào)遞增區(qū)間是( 。
A.(-∞,0]B.[0,+∞)C.[1,+∞)D.(-∞,1]

分析 先求出函數(shù)的對(duì)稱軸,結(jié)合二次函數(shù)的性質(zhì),從而得到函數(shù)的單調(diào)區(qū)間.

解答 解:∵對(duì)稱軸x=1,開口向下,
∴函數(shù)在(-∞,1]上遞增,
故選:D

點(diǎn)評(píng) 本題考查了二次函數(shù)的性質(zhì),考查了函數(shù)的單調(diào)性,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.?dāng)?shù)列{an}中,a1=1,an-an+1=anan+1,n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)Sn為{an}的前n項(xiàng)和,bn=S2n-Sn,求bn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}是無窮數(shù)列,滿足lgan+1=|lgan-lgan-1|(n=2,3,4,…).
(Ⅰ)若a1=2,a2=3,求a3,a4,a5的值;
(Ⅱ)求證:“數(shù)列{an}中存在ak(k∈N*)使得lgak=0”是“數(shù)列{an}中有無數(shù)多項(xiàng)是1”的充要條件;
(Ⅲ)求證:在數(shù)列{an}中?ak(k∈N*),使得1≤ak<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=x2+2ax+a2-1.
(1)若對(duì)任意的x∈R均有f(1-x)=f(1+x),求實(shí)數(shù)a的值;
(2)當(dāng)x∈[-1,1]時(shí),求f(x)的最小值,用g(a)表示其最小值,判斷g(a)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.有5本不同的書,其中語(yǔ)文書2本,數(shù)學(xué)書2本,物理書1本,若將其隨機(jī)地并排放到書架的同一層上,則同一科目的書都相鄰的概率為( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{1}{4}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.現(xiàn)有6道題,其中3道甲類題,2道乙類題,張同學(xué)從中任取2道題解答.試求:
(I)所取的2道題都是甲類題的概率;
(II)所取的2道題不是同一類題的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)=$\frac{1}{{e}^{|x|}}$•log3($\frac{1}{\sqrt{1+2{x}^{2}}+ax}$)圖象關(guān)于原點(diǎn)對(duì)稱.則實(shí)數(shù)a的值構(gòu)成的集合為$±\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,四棱錐P-ABCD的底面ABCD是菱形,PA⊥AB,PC=PD,E是CD的中點(diǎn).
(Ⅰ)證明:平面PAE⊥平面ABCD;
(Ⅱ)若PB=PD=2PA,求二面角B-PC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合U={1,2,3,4},集合A={2,3},則∁UA=(  )
A.{1,2,3,4}B.{1,4}C.{2,3}D.{3,4}

查看答案和解析>>

同步練習(xí)冊(cè)答案