【題目】交強險是車主必須為機動車購買的險種,若普通座以下私家車投保交強險第一年的費用(基準保費)統(tǒng)一為元,在下一年續(xù)保時,實行的是費率浮動機制,保費與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費率也就越高,具體浮動情況如下表(其中浮動比率是在基準保費上上下浮動):
交強險浮動因素和浮動費率比率表 | ||
浮動因素 | 浮動比率 | |
上一個年度未發(fā)生有責任道路交通事故 | 下浮 | |
上兩個年度未發(fā)生有責任道路交通事故 | 下浮 | |
上三個及以上年度未發(fā)生有責任道路交通事故 | 下浮 | |
上一個年度發(fā)生一次有責任不涉及死亡的道路交通事故 | ||
上一個年度發(fā)生兩次及兩次以上有責任道路交通事故 | 上浮 | |
上一個年度發(fā)生有責任道路交通死亡事故 | 上浮 |
某機構(gòu)為了研究某一品牌普通座以下私家車的投保情況,隨機抽取了輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:
類型 | ||||||
數(shù)量 |
(Ⅰ)求這輛車普通座以下私家車在第四年續(xù)保時保費的平均值(精確到元)
(Ⅱ)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基準保費的車輛記為事故車.假設(shè)購進一輛事故車虧損元,一輛非事故車盈利元,且各種投保類型車的頻率與上述機構(gòu)調(diào)查的頻率一致.試完成下列問題:
①若該銷售商店內(nèi)有六輛(車齡已滿三年)該品牌二手車,某顧客欲在該店內(nèi)隨機挑選輛車,求這輛車恰好有一輛為事故車的概率;
②若該銷售商一次購進輛車(車齡已滿三年)該品牌二手車,求一輛車盈利的平均值.
【答案】(1)942.1;(2)①概率為;②5000.
【解析】
分析:(1)由統(tǒng)計表能求出這60輛普通6座以下私家車在第四年續(xù)保時保費的平均值;
(2)①由統(tǒng)計數(shù)據(jù)可知,該銷售商店內(nèi)的輛該品牌車齡已滿三年的二手車中有輛事故車,設(shè)為,,輛非事故車,設(shè)為,,,.從這輛車中隨機挑選輛車的情況有20種,利用列舉法能求出這3車輛中恰好有一輛事故車的概率;
②由統(tǒng)計數(shù)據(jù)可知,該銷售商一次購進輛該品牌車齡已滿三年的二手車有事故車輛,
非事故車輛,由此能求出一輛車盈利的平均值.
詳解:(1)這輛普通6座以下私家車在第四年續(xù)保時保費高的平均值為
元;
(2) ①由統(tǒng)計數(shù)據(jù)可知,該銷售商店內(nèi)的輛該品牌車齡已滿三年的二手車中有輛事故車,
設(shè)為,,輛非事故車,設(shè)為,,,.
從這輛車中隨機挑選輛車的情況有,,,,,
,,,,,,,
,,,,,,,,共種情況.
其中輛車中恰好有一輛為事故車的情況有:
,,,,,,
,,,,,,共種.
故該顧客在店內(nèi)隨機挑選輛車,
這輛車中恰好有一輛事故車的概率為.
②由統(tǒng)計數(shù)據(jù)可知,該銷售商一次購進輛該品牌車齡已滿三年的二手車有事故車輛,
非事故車輛,所以一輛車盈利的平均值為(元).
科目:高中數(shù)學 來源: 題型:
【題目】已知公差不為零的等差數(shù)列滿足,且成等比數(shù)列.
(1)求數(shù)列的通項公式;
(2)設(shè),求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)對于任意的都有,給出以下命題:
①在上是增函數(shù);
②可能存在,使得對任意的恒成立;
③可能存在,使得成立;
④沒有最大值和最小值.
則正確的命題的個數(shù)為( ).
A.個B.個C.個D.個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點,直線:,為平面上的動點,過點作直線的垂線,垂足為,且滿足.
(1)求動點的軌跡的方程;
(2)過點作直線與軌跡交于,兩點,為直線上一點,且滿足,若的面積為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ax2–a–lnx,g(x)=,其中a∈R,e=2.718…為自然對數(shù)的底數(shù).
(1)討論f(x) 的單調(diào)性;
(2)證明:當x>1時,g(x)>0;
(3)如果f(x)>g(x) 在區(qū)間(1,+∞)內(nèi)恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖是函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的圖象,給出下列命題:
①﹣3是函數(shù)y=f(x)的極值點;
②﹣1是函數(shù)y=f(x)的最小值點;
③y=f(x)在x=0處切線的斜率小于零;
④y=f(x)在區(qū)間(﹣3,1)上單調(diào)遞增.
則正確命題的序號是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法:
①命題:“在中,若則”的逆命題為假命題;
②“”是直線與圓相交的充分不必要條件;
③命題:“若則”的逆否命題是“若則”;
④若或,則為真命題。
其中正確的說法個數(shù)為()
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線: 的左、右焦點分別為, 為坐標原點, 是雙曲線上在第一象限內(nèi)的點,直線分別交雙曲線左、右支于另一點, ,且,則雙曲線的離心率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,直三棱柱中,,,,為的中點,點為線段上的一點.
(1)若,求證:;
(2)若,異面直線與所成的角為,求直線與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com