3.過拋物線C:y2=4x的焦點F作直線l將拋物線C于A、B,若|AF|=4|BF|,則直線l的斜率是$±\frac{4}{3}$.

分析 由拋物線方程求出拋物線的焦點坐標,設(shè)出直線l的方程,和拋物線方程聯(lián)立,化為關(guān)于y的一元二次方程后利用根與系數(shù)的關(guān)系得到A,B兩點縱坐標的和與積,結(jié)合|AF|=3|BF|,轉(zhuǎn)化為關(guān)于直線斜率的方程求解.

解答 解:∵拋物線C方程為y2=4x,可得它的焦點為F(1,0),
∴設(shè)直線l方程為y=k(x-1),
由$\left\{\begin{array}{l}{y=k(x-1)}\\{{y}^{2}=4x}\end{array}\right.$,消去x得$\frac{k}{4}$y2-y-k=0.
設(shè)A(x1,y1),B(x2,y2),
可得y1+y2=$\frac{4}{k}$,y1y2=-4①.
∵|AF|=4|BF|,
∴y1+4y2=0,可得y1=-4y2,代入①得-3y2=$\frac{4}{k}$,且-4y22=-4,
解得y2=±1,解,得k=±$\frac{4}{3}$.
故答案為:$±\frac{4}{3}$.

點評 本題考查了拋物線的簡單性質(zhì),著重考查了舍而不求的解題思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知|$\overrightarrow{AB}$|=3,|$\overrightarrow{AC}$|=2$\sqrt{3}$,∠BAC=30°,且$\overrightarrow{AD}$+2$\overrightarrow{BD}$=0,則$\overrightarrow{AC}$•$\overrightarrow{CD}$等于( 。
A.18B.9C.-8D.-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=2x+ax2+bcosx在點$(\frac{π}{2},f(\frac{π}{2}))$處的切線方程為$y=\frac{3π}{4}$.
(Ⅰ)求a,b的值,并討論f(x)在$[{0,\frac{π}{2}}]$上的增減性;
(Ⅱ)若f(x1)=f(x2),且0<x1<x2<π,求證:$f'(\frac{{{x_1}+{x_2}}}{2})<0$.
(參考公式:$cosθ-cosφ=-2sin\frac{θ+φ}{2}sin\frac{θ-φ}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.滿足不等式組$\left\{\begin{array}{l}{(x-y+1)(x+y-3)≤0}\\{2≤y≤3}\end{array}\right.$的點(x,y)組成的圖形的面積為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)M為邊長為4的正方形ABCD的邊BC的中點,N為正方形區(qū)域內(nèi)任意一點(含邊界),則$\overrightarrow{AM}$•$\overrightarrow{AN}$的最大值為( 。
A.32B.24C.20D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=(x-$\frac{3}{4}$)ex,g(x)=4x2-4x+mln(2x)(m∈R),g(x)存在兩個極值點x1,x2(x1<x2).
(1)求f(x1-x2)的最小值;
(2)若不等式g(x1)≥ax2恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若集合A={x|x2+3x-4>0},B={x|-2<x≤3},且M=A∩B,則有( 。
A.1∈MB.2∈MC.(∁RB)⊆AD.B⊆A

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知A(-1,2),B(3,4),C(4,-6),若拋物線y2=ax的焦點恰好是△ABC的重心,則a=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{y≥0}\\{x+y-3≤0}\\{x-2y+6≥0}\end{array}\right.$,則目標函數(shù)z=2x-y的最小值為-12.

查看答案和解析>>

同步練習(xí)冊答案