【題目】在考察疫情防控工作中,某區(qū)衛(wèi)生防控中心提出了“要堅(jiān)持開展愛國衛(wèi)生運(yùn)動(dòng),從人居環(huán)境改善、飲食習(xí)慣、社會(huì)心理健康、公共衛(wèi)生設(shè)施等多個(gè)方面開展,特別是要堅(jiān)決杜絕食用野生動(dòng)物的陋習(xí),提倡文明健康、綠色環(huán)保的生活方式”的要求.某小組通過問卷調(diào)查,隨機(jī)收集了該區(qū)居民六類日常生活習(xí)慣的有關(guān)數(shù)據(jù).六類習(xí)慣是:(1)衛(wèi)生習(xí)慣狀況類;(2)垃圾處理狀況類;(3)體育鍛煉狀況類;(4)心理健康狀況類;(5)膳食合理狀況類;(6)作息規(guī)律狀況類.經(jīng)過數(shù)據(jù)整理,得到下表:

衛(wèi)生習(xí)慣狀況類

垃圾處理狀況類

體育鍛煉狀況類

心理健康狀況類

膳食合理狀況類

作息規(guī)律狀況類

有效答卷份數(shù)

380

550

330

410

400

430

習(xí)慣良好頻率

0.6

0.9

0.8

0.7

0.65

0.6

假設(shè)每份調(diào)查問卷只調(diào)查上述六類狀況之一,各類調(diào)查是否達(dá)到良好標(biāo)準(zhǔn)相互獨(dú)立.

1)從小組收集的有效答卷中隨機(jī)選取1份,求這份試卷的調(diào)查結(jié)果是膳食合理狀況類中習(xí)慣良好者的概率;

2)從該區(qū)任選一位居民,試估計(jì)他在“衛(wèi)生習(xí)慣狀況類、體育鍛煉狀況類、膳食合理狀況類”三類習(xí)慣方面,至少具備兩類良好習(xí)慣的概率;

3)利用上述六類習(xí)慣調(diào)查的排序,用“”表示任選一位第k類受訪者是習(xí)慣良好者,“”表示任選一位第k類受訪者不是習(xí)慣良好者(.寫出方差,,,的大小關(guān)系.

【答案】123

【解析】

1)設(shè)“選取的試卷的調(diào)查結(jié)果是膳食合理狀況類中習(xí)慣良好者“的事件為,根據(jù)古典概型求出即可;

2)設(shè)該區(qū)“衛(wèi)生習(xí)慣狀況良好者“,“體育鍛煉狀況良好者“、“膳食合理狀況良好者”事件分別為,,,設(shè)事件為“該居民在“衛(wèi)生習(xí)慣狀況類、體育鍛煉狀況類、膳食合理狀況類”三類習(xí)慣方面,至少具備兩類良好習(xí)慣“,則E,求出即可;

3)根據(jù)題意,寫出即可.

1)設(shè)“選取的試卷的調(diào)查結(jié)果是膳食合理狀況類中習(xí)慣良好者“的事件為,

有效問卷共有(份,

其中受訪者中膳食合理習(xí)慣良好的人數(shù)是人,

A;

2)設(shè)該區(qū)“衛(wèi)生習(xí)慣狀況良好者“,“體育鍛煉狀況良好者“、“膳食合理狀況良好者”事件分別為,,

根據(jù)題意,可知A,(B,C

設(shè)事件為“該居民在“衛(wèi)生習(xí)慣狀況類、體育鍛煉狀況類、膳食合理狀況類”三類習(xí)慣方面,至少具備兩類良好習(xí)慣“

.

所以該居民在“衛(wèi)生習(xí)慣狀況類、體育鍛煉狀況類、膳食合理狀況類”三類習(xí)慣至少具備2個(gè)良好習(xí)慣的概率為0.766.

3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面,底面是正形,的中點(diǎn).

1)求證:平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)訄AM過點(diǎn)且與直線相切.

(1)求動(dòng)圓圓心M的軌跡C的方程;

(2)斜率為的直線l經(jīng)過點(diǎn)且與曲線C交于AB兩點(diǎn),線段AB的中垂線交x軸于點(diǎn)N,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的不等式的解集是,

(1)求a的值;

(2)求不等式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).

(1) 證明:PB∥平面AEC

(2) 設(shè)二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,三棱柱的側(cè)棱垂直于底面,且底面是邊長為2的正三角形,,點(diǎn)D,E,F分別是所在棱的中點(diǎn).

(1)在線段上找一點(diǎn)使得平面∥平面,給出點(diǎn)的位置并證明你的結(jié)論;

(2)在(1)的條件下,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)準(zhǔn)備將8本相同的書全部分配給5個(gè)不同的班級(jí),其中甲、乙兩個(gè)班級(jí)每個(gè)班級(jí)至少2本,其它班級(jí)允許1本也沒有,則不同的分配方案共有(

A.60B.70C.82D.92

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義個(gè)正數(shù)、、的“均倒數(shù)”.已知正項(xiàng)數(shù)列的前項(xiàng)的“均倒數(shù)”為.

1)求數(shù)列的通項(xiàng)公式;

2)設(shè)數(shù)列的前項(xiàng)和為,若對(duì)一切恒成立,試求實(shí)數(shù)的取值范圍;

3)令,問:是否存在正整數(shù)使得對(duì)一切恒成立,如存在,求出值,否則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】松、竹、梅經(jīng)冬不衰,因此有“歲寒三友”之稱.在我國古代的詩詞和典籍中有很多與松和竹相關(guān)的描述和記載,宋代劉學(xué)箕的《念奴嬌·水軒沙岸》的“綴松黏竹,恍然如對(duì)三絕”描寫了大雪后松竹并生相依的美景;宋元時(shí)期數(shù)學(xué)名著《算學(xué)啟蒙》中亦有關(guān)于“松竹并生”的問題:松長五尺,竹長兩尺,松日自半,竹日自倍,松竹何日而長等.現(xiàn)欲知幾日后,竹長超過松長一倍.為了解決這個(gè)新問題,設(shè)計(jì)下面的程序框圖,若輸入的,則輸出的的值為(

A.4B.5C.6D.7

查看答案和解析>>

同步練習(xí)冊(cè)答案