【題目】如圖,兩個正方形ABCD和ADEF所在平面互相垂直,設(shè)M、N分別是BD和AE的中點(diǎn),那么①AD⊥MN;②MN∥平面CDE;③MN∥CE;④MN、CE異面.其中假命題的個數(shù)為( )

A.4
B.3
C.2
D.1

【答案】D
【解析】解:∵兩個正方形ABCD和ADEF所在平面互相垂直,M、N分別是BD和AE的中點(diǎn),

取AD的中點(diǎn)G,連接MG,NG,易得AD⊥平面MNG,進(jìn)而得到AD⊥MN,故①正確;

連接AC,CE,根據(jù)三角形中位線定理,可得MN∥CE,由線面平行的判定定理,可得②MN∥面CDE及③MN∥CE正確,④MN、CE錯誤;

∴其中假命題的個數(shù)為:1

所以答案是:D

【考點(diǎn)精析】本題主要考查了命題的真假判斷與應(yīng)用的相關(guān)知識點(diǎn),需要掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知m∈R,n∈R,并且m+3n=1,則mem+3ne3n的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)曲線y=xn+1(n∈N*)在點(diǎn)(1,1)處的切線與x軸的交點(diǎn)的橫坐標(biāo)為xn , 令an=lgxn , 則a1+a2+…+a99的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有4個不同的球,4個不同的盒子,把球全部放入盒子內(nèi).
(1)共有幾種放法?
(2)恰有1個空盒,有幾種放法?
(3)恰有2個盒子不放球,有幾種放法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x),g(x)滿足 f(x)g(x)dx=0,則f(x),g(x)為區(qū)間[﹣1,1]上的一組正交函數(shù),給出三組函數(shù): ①f(x)=sin x,g(x)=cos x;
②f(x)=x+1,g(x)=x﹣1;
③f(x)=x,g(x)=x2 ,
其中為區(qū)間[﹣1,1]上的正交函數(shù)的組數(shù)是(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若不等式ax2﹣bx+c>0的解集為{x|﹣2<x<3},求不等式cx2﹣bx﹣a<0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了培養(yǎng)學(xué)生的數(shù)學(xué)建模和應(yīng)用能力,某校組織了一次實(shí)地測量活動,如圖,假設(shè)待測量的樹木AE的高度H(m),垂直放置的標(biāo)桿BC的高度h=4m,仰角∠ABE=α,∠ADE=β(D,C,E三點(diǎn)共線),試根據(jù)上述測量方案,回答如下問題:

(1)若測得α=60°、β=30°,試求H的值;
(2)經(jīng)過分析若干次測得的數(shù)據(jù)后,大家一致認(rèn)為適當(dāng)調(diào)整標(biāo)桿到樹木的距離d(單位:m),使α與β之差較大時,可以提高測量精確度.
若樹木的實(shí)際高度為8m,試問d為多少時,α﹣β最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果曲線2|x|﹣y﹣4=0與曲線x2+λy2=4(λ<0)恰好有兩個不同的公共點(diǎn),則實(shí)數(shù)λ的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示是一個三棱臺ABCABC′,試用兩個平面把這個三棱臺分成三部分,使每一部分都是一個三棱錐.

查看答案和解析>>

同步練習(xí)冊答案