分析 (1)利用余弦定理,求對角線BD的長;
(2)由等面積可求點A到BD的距離.
解答 解:(1)∵∠ABC=∠ADC=90°,AD=CD,BC=$\sqrt{3}$AB,對角線AC=2.
∴AD=$\sqrt{2}$,AB=1,∠DAC=45°,∠BAC=60°,
∴BD=$\sqrt{2+1-2×\sqrt{2}×1×cos105°}$=$\sqrt{2+\sqrt{3}}$=$\frac{\sqrt{2}+\sqrt{6}}{2}$;
(2)設點A到BD的距離為h,則
由等面積可得$\frac{1}{2}×1×\sqrt{2}×sin105°$=$\frac{1}{2}×$$\frac{\sqrt{2}+\sqrt{6}}{2}$h,
∴h=$\frac{\sqrt{2}}{2}$.
點評 本題考查空間距離的計算,考查余弦定理,考查學生分析解決問題的能力,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | 3 | B. | 6 | C. | 9 | D. | 4$\sqrt{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 16$\sqrt{2}$ | B. | 8$\sqrt{2}$ | C. | 8$\root{3}{4}$ | D. | 4$\root{3}{4}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$ | B. | $\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}•\overrightarrow{n}|}$ | C. | -$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}||\overrightarrow{n}|}$ | D. | 以上都不對 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $2\sqrt{3}$ | B. | $2\sqrt{2}$ | C. | $2\sqrt{5}$ | D. | $2\sqrt{6}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com