a |
3 |
a+1 |
2 |
a |
3 |
a+1 |
2 |
a |
3 |
a+1 |
2 |
a |
3 |
a+1 |
2 |
a |
3 |
a+1 |
2 |
a+3 |
6 |
|
a+3 |
6 |
1 |
a |
1 |
a |
1 |
a |
1 |
a |
1 |
a |
1 |
a |
1 |
a |
1 |
a |
1 |
a |
1 |
a |
1 |
a |
1 |
a |
1 |
a |
1 |
a |
1 |
a |
1 |
a |
1 |
a |
1 |
a |
1 |
a |
1 |
a |
1 |
a |
a |
3 |
a+1 |
2 |
a |
3 |
a+1 |
2 |
a+3 |
6 |
|
1 |
2 |
7 |
12 |
a+3 |
6 |
2 |
3 |
7 |
12 |
2 |
3 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿分16分)第(1)小題滿分4分,第(2)小題滿分6分,第(3)小題滿分6分。 定義:由橢圓的兩個(gè)焦點(diǎn)和短軸的一個(gè)頂點(diǎn)組成的三角形稱為該橢圓的“特征三角形”。如果兩個(gè)橢圓的“特征三角形”是相似的,則稱這兩個(gè)橢圓是“相似橢圓”,并將三角形的相似比稱為橢圓的相似比。已知橢圓。 若橢圓,判斷與是否相似?如果相似,求出與的相似比;如果不相似,請(qǐng)說(shuō)明理由; 寫出與橢圓相似且短半軸長(zhǎng)為的橢圓的方程;若在橢圓上存在兩點(diǎn)、關(guān)于直線對(duì)稱,求實(shí)數(shù)的取值范圍? 如圖:直線與兩個(gè)“相似橢圓”和分別交于點(diǎn)和點(diǎn), 試在橢圓和橢圓上分別作出點(diǎn)和點(diǎn)(非橢圓頂點(diǎn)),使和組成以為相似比的兩個(gè)相似三角形,寫出具體作法。(不必證明) 查看答案和解析>> 科目:高中數(shù)學(xué) 來(lái)源: 題型: 吉林省吉林一中2011屆高三下學(xué)期沖刺試題一(數(shù)學(xué)理).doc | | |
|