分析 (1)當(dāng)n=2時(shí),通過已知條件列出方程組,然后求x1,x2的值;
(2)當(dāng)n=3時(shí),利用條件列出x1+x2+x3=0,|x1|+|x2|+|x3|=1,通過|3x1+2x2+x3|=|x1+2(x1+x2+x3)-x3|,然后證明|3x1+2x2+x3|≤1;
(3)通過a1≥ai≥an,且a1>an(i=1,2,3,…,n).轉(zhuǎn)化為|(a1-ai)-(ai-an)|≤|(a1-ai)+(ai-an)|=|a1-an|,推出|a1+an-2ai|≤|a1-an|,借助(2)的證明方法即可證明.
解答 (1)解:當(dāng)n=2時(shí),①x1+x2=0;②|x1|+|x2|=1
由①得x2=-x1,再由②知x1≠0,且x2≠0.
當(dāng)x1>0時(shí),x2<0.得2x1=1,所以x1=$\frac{1}{2}$,x2=-$\frac{1}{2}$…(2分)
當(dāng)x1<0時(shí),同理得x1=-$\frac{1}{2}$,x2-$\frac{1}{2}$…(4分)
(2)證明:當(dāng)n=3時(shí),
由已知x1+x2+x3=0,|x1|+|x2|+|x3|=1.
所以|3x1+2x2+x3|=|x1+2(x1+x2+x3)-x3|=|x1-x3|≤|x1|+|x3|≤1.…(9分)
(3)證明:因?yàn)閍1≥ai≥an,且a1>an(i=1,2,3,…,n).
所以|(a1-ai)-(ai-an)|≤|(a1-ai)+(ai-an)|=|a1-an|,
即|a1+an-2ai|≤|a1-an|(i=1,2,3,…,n).…(11分)
|$\sum_{i=1}^{n}$aixi|=$\frac{1}{2}$|$\sum_{i=1}^{n}$(2ai-a1-an)xi|≤$\frac{1}{2}$|$\sum_{i=1}^{n}$(|a1+an-2ai||xi|)≤$\frac{1}{2}$|$\sum_{i=1}^{n}$(|a1-an||xi|)≤$\frac{1}{2}$(a1-an)
∴$|{{a_1}{x_1}+{a_2}{x_2}+{a_3}{x_3}+…+{a_n}{x_n}}|≤\frac{1}{2}({a_1}-{a_n})$.…(14分)
點(diǎn)評(píng) 本題考查含絕對(duì)值不等式的證明,方程組的求法,注意求和表達(dá)式的應(yīng)用,考查轉(zhuǎn)化思想與計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $y=sin(4x-\frac{π}{5})$ | B. | $y=sin(2x-\frac{2π}{5})$ | C. | $y=sin(4x-\frac{2π}{5})$ | D. | $y=sin(4x-\frac{3π}{5})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2或-2 | B. | -2或0 | C. | 2 | D. | 0或2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 0.5 | D. | 1.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 192種 | B. | 216種 | C. | 240種 | D. | 360種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com