【題目】設f(x)是定義在R上的奇函數(shù),當x>0時,f(x)=x﹣1,則不等式f(x)<0的解集為(

A.(﹣∞,﹣1)∪(0,1)
B.(﹣∞,﹣1)∪(1,+∞)
C.(﹣1,1)
D.(﹣1,0)∪(1,+∞)

【答案】A
【解析】解:設x<0,則﹣x>0,∵當x>0時,f(x)=x﹣1,
∴f(﹣x)=﹣x﹣1,
∴f(x)=﹣f(x)=x+1,x<0.
圖象如圖所示,則不等式f(x)<0的解集為(﹣∞,﹣1)∪(0,1),
故選A.
【考點精析】掌握函數(shù)奇偶性的性質(zhì)是解答本題的根本,需要知道在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個奇函數(shù)的乘除認為奇函數(shù);偶數(shù)個奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復合函數(shù)的奇偶性:一個為偶就為偶,兩個為奇才為奇.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x+ +3,x∈N* , 在x=5時取到最小值,則實數(shù)a的所有取值的集合為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設等差數(shù)列{an}的前n項和為Sn,若Sm1=-2,Sm=0,Sm1=3,則m=(  )

A. 5 B. 4 C. 3 D. 6

【答案】A

【解析】

根據(jù)數(shù)列前n項和的定義得到的值,再由數(shù)列的前n項和的公式得到,進而求得首項,由=2,解得m.

Sm-1=-2,Sm=0,故得到 Sm=0,Sm+1=3,則

根據(jù)等差數(shù)列的前n項和公式得到Sm,得到首項為-2,故=2,解得m=5.

故答案為:A.

【點睛】

這個題目考查的是數(shù)列通項公式的求法及數(shù)列求和的常用方法;數(shù)列通項的求法中有常見的已知的關(guān)系,求表達式,一般是寫出做差得通項,但是這種方法需要檢驗n=1時通項公式是否適用;數(shù)列求和常用法有:錯位相減,裂項求和,分組求和等。

型】單選題
結(jié)束】
11

【題目】已知等比數(shù)列{an}的各項均為不等于1的正數(shù),數(shù)列{bn}滿足bn=lgan,b3=18,b6=12,則數(shù)列{bn}的前n項和的最大值等于(  )

A. 126 B. 130 C. 132 D. 134

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是公比為正數(shù)的等比數(shù)列,,

(1)的通項公式;

(2)是首項為1,公差為2的等差數(shù)列,求數(shù)列的前項和

【答案】(1)(2)

【解析】

(1)根據(jù)等比數(shù)列的通項公式得到:,解得二次方程可得到(舍去),進而得到數(shù)列的通項;(2)已知數(shù)列的類型是等差數(shù)列與等比數(shù)列求和的問題,根據(jù)等差等比數(shù)列求和公式得到結(jié)果即可.

:(1)為等比數(shù)列的公比,則由,:

,解得:(舍去)

所以的通項公式為

(2) 由 等 差 數(shù) 列 的 通 項 公 式 得 到:

由 等 差 數(shù) 列求 和 公 式 和 等 比 數(shù) 列 前 n 項 和 公 式 得 到

【點睛】

這個題目考查的是數(shù)列通項公式的求法及數(shù)列求和的常用方法;數(shù)列通項的求法中有常見的已知的關(guān)系,求表達式,一般是寫出做差得通項,但是這種方法需要檢驗n=1時通項公式是否適用;數(shù)列求和常用法有:錯位相減,裂項求和,分組求和等。

型】解答
結(jié)束】
18

【題目】a≠b,解關(guān)于x的不等式a2xb2(1-x)≥[axb(1-x)]2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C1的方程為,雙曲線C2的左、右焦點分別是C1的左、右頂點,而C2的左、右頂點分別是C1的左、右焦點,O為坐標原點.

(1)求雙曲線C2的方程;

(2)若直線lykx與雙曲線C2恒有兩個不同的交點AB,且,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】199個自然數(shù)中任取兩個:

恰有一個偶數(shù)和恰有一個奇數(shù);至少有一個是奇數(shù)和兩個數(shù)都是奇數(shù);

至多有一個奇數(shù)和兩個數(shù)都是奇數(shù);至少有一個奇數(shù)和至少有一個偶數(shù).

在上述事件中,是對立事件的是  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足 是等差數(shù)列,且b1=a1 , b4=a3
(1)求數(shù)列{an}和{bn}的通項公式;
(2)若 ,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=Asin(ωx+φ)滿足:f( +x)=﹣f( ﹣x),且f( +x)=f( ﹣x),則ω的一個可能取值是(
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ex﹣1,g(x)=﹣x2+4x﹣3,若存在f(a)=g(b),則實數(shù)b的取值范圍為(
A.[1,3]
B.(1,3)
C.
D.

查看答案和解析>>

同步練習冊答案