11.已知函數(shù)f(x)=ax-lnx,g(x)=ex-ax,其中a為正實(shí)數(shù),若f(x)在(1,+∞)上無最小值,且g(x)在(1,+∞)上是單調(diào)遞增函數(shù),則實(shí)數(shù)a的取值范圍為[1,e].

分析 求出f(x)的導(dǎo)數(shù),問題轉(zhuǎn)化為f′(x)≥0在(1,+∞)上恒成立,分離參數(shù),求出a的最小值;求出g(x)的導(dǎo)數(shù),問題轉(zhuǎn)化為a≤[ex]min在區(qū)間(1,+∞)上成立,求出a的范圍,取交集即可.

解答 解:∵f(x)=ax-lnx,(x>0),
f′(x)=a-$\frac{1}{x}$=$\frac{ax-1}{x}$,
若f(x)在(1,+∞)上無最小值,
則f(x)在(1,+∞)單調(diào),
∴f′(x)≥0在(1,+∞)上恒成立,
或f′(x)≤0在(1,+∞)上恒成立,
∴a≥$\frac{1}{x}$,或a≤$\frac{1}{x}$,而函數(shù)y=$\frac{1}{x}$在(1,+∞)上單調(diào)減,
∴x=1時(shí),函數(shù)y取得最大值1,
∴a≥1或a≤0,而a為正實(shí)數(shù),
故a≥1①,
又∵g(x)=ex-ax,
∴g′(x)=ex-a,
∵函數(shù)g(x)=ex-ax在區(qū)間(1,+∞)上單調(diào)遞增,
∴函數(shù)g′(x)=ex-a≥0在區(qū)間(1,+∞)上恒成立,
∴a≤[ex]min在區(qū)間(1,+∞)上成立.
而ex>e,
∴a≤e②;
綜合①②,a∈[1,e],
故答案為:[1,e].

點(diǎn)評(píng) 正確把問題等價(jià)轉(zhuǎn)化、熟練掌握利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值與最值等是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.用2種不同的顏色給圖中的3個(gè)圓隨機(jī)涂色,每個(gè)圓只涂1種顏色,則相鄰的兩個(gè)圓顏色均不相同的概率為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{2}{x}$+alnx-2(a>0)
(1)若曲線y=f(x)在點(diǎn)P(1,f(1))處的切線與直線y=x+2垂直,求函數(shù)y=f(x)的
單調(diào)區(qū)間;
(2)若對(duì)?x∈(0,+∞),都有f′(x)≤($\frac{x+1}{x}$)2恒成立,試求實(shí)數(shù)a的取值范圍;
(3)記g(x)=f(x)+x-b,當(dāng)a=1時(shí),函數(shù)g(x)在區(qū)間[e-1,e]上有兩個(gè)零點(diǎn),求實(shí)數(shù)b的取值范圍(e為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=$\frac{2-x}{x-1}$+aln(x-1)(a∈R).
(Ⅰ) 若函數(shù)f(x)在區(qū)間[2,+∞)上是單調(diào)遞增函數(shù),試求實(shí)數(shù)a的取值范圍;
(Ⅱ) 當(dāng)x∈[2,+∞)時(shí),求證:$\frac{x-2}{x-1}$≤2ln(x-1)≤2x-4;
(Ⅲ) 求證:$\frac{1}{4}$+$\frac{1}{6}$+…+$\frac{1}{2n}$<lnn<1+$\frac{1}{2}$+…+$\frac{1}{n-1}$(n∈N*且n≥2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)f(x)=ex-x(e為自然對(duì)數(shù)的底數(shù))在區(qū)間[0,1]上的最大值是( 。
A.1+$\frac{1}{e}$B.1C.e+1D.e-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖所示的幾何體由平面PECF截棱長為2的正方體得到,其中P、C為原正方體的頂點(diǎn),E、F為原正方體側(cè)棱的中點(diǎn),正方形ABCD為原正方體的底面,點(diǎn)G為線段BC上的動(dòng)點(diǎn).
(1)求證:平面APC⊥平面PECF;
(2)設(shè)$\overrightarrow{BG}$=λ$\overrightarrow{BC}$,AB與平面EFG所成的角為θ,當(dāng)θ∈($\frac{π}{6}$,$\frac{π}{4}$)時(shí),求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列各命題中正確的是(  )
①若命題“p或q”為真命題,則命題“p”和命題“q”均為真命題;
②命題“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1≤3x”;
③“x=4”是“x2-3x-4=0”的充分不必要條件;
④命題“若m2+n2=0,則m=0且n=0”的否命題是“若m2+n2≠0,則m≠0且n≠0”.
A.②③B.①②③C.①②④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=a•ex+x2-bx(a,b∈R,e=2.71828…是自然對(duì)數(shù)的底數(shù)),其導(dǎo)函數(shù)為y=f′(x).
(1)設(shè)a=-1,若函數(shù)y=f(x)在R上是單調(diào)減函數(shù),求b的取值范圍;
(2)設(shè)b=0,若函數(shù)y=f(x)在R上有且只有一個(gè)零點(diǎn),求a的取值范圍;
(3)設(shè)b=2,且a≠0,點(diǎn)(m,n)(m,n∈R)是曲線y=f(x)上的一個(gè)定點(diǎn),是否存在實(shí)數(shù)x0(x0≠m),使得f(x0)=f′($\frac{{x}_{0}+m}{2}$)(x0-m)+n成立?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知sinθ+cosθ=$\frac{1}{5}$,θ∈($\frac{π}{2}$,π),求tanθ.

查看答案和解析>>

同步練習(xí)冊(cè)答案