【題目】已知等比數(shù)列{an}的前n項和為Sn,a1=1,且4Sn,3Sn+1,2Sn+2成等差數(shù)列.
(1)求{an}的通項公式;
(2)若數(shù)列{bn}滿足b1=0,bn+1﹣bn=1,設cn,求數(shù)列{cn}的前2n項和.
【答案】(1)an=2n﹣1,n∈N*(2)n2
【解析】
(1)運用等差數(shù)列的中項性質可得3Sn+1=2Sn+Sn+2,即2an+1=an+2,根據(jù)等比數(shù)列的定義,通項公式可求;
(2)由等差數(shù)列的定義和通項公式,可得bn,求得cn,運用數(shù)列的分組求和,以及等差數(shù)列和等比數(shù)列的求和公式,可得所求和.
解:(1)由4Sn,3Sn+1,2Sn+2成等差數(shù)列,
可得6Sn+1=4Sn+2Sn+2,即3Sn+1=2Sn+Sn+2,
即2(Sn+1﹣Sn)=Sn+2﹣Sn+1,
即2an+1=an+2,又{an}為等比數(shù)列,所以等比數(shù)列{an}的公比為2,
又a1=1,可得an=2n﹣1,n∈N*;
(2)由b1=0,bn+1﹣bn=1,可得{bn}是首項為0,公差為1的等差數(shù)列,
則bn=n﹣1,n∈N*,
cn,
所以{cn}的前2n項和為c1+c2+…+c2n=(a1+a3+…+a2n﹣1)+(b2+b4+…+b2n)
=(1+4+16+…+22n﹣2)+(1+3+…+2n﹣1)
nn2.
科目:高中數(shù)學 來源: 題型:
【題目】己知點A是拋物線的對稱軸與準線的交點,點B為拋物線的焦點,P在拋物線上且滿足,當取最大值時,點P恰好在以A、B為焦點的雙曲線上,則雙曲線的離心率為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐中,,,,,.
(1)求證:平面平面;
(2)在線段上是否存在點,使得平面與平面所成銳二面角為?若存在,求的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,動直線交拋物線于A,B兩點.
(1)若,證明直線過定點,并求出該定點;
(2)點M為的中點,過點M作與y軸垂直的直線交拋物線于C點;點N為的中點,過點N作與y軸垂直的直線交拋物線于點P.設△的面積,△的面積為.
(i)若過定點,求使取最小值時,直線的方程;
(ii)求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),直線經過點且傾斜角為,,以原點為極點,軸的正半軸為極軸建立極坐標系.
(1)求曲線的極坐標方程;
(2)過原點作直線的垂線,垂足為,交曲線于另一點,當變化時,求的面積的最大值及相應的的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD為正方形,PA⊥平面ABCD,PA=AB,E為線段PB的中點,F為線段BC上的動點.
(1)求證:AE⊥平面PBC;
(2)試確定點F的位置,使平面AEF與平面PCD所成的銳二面角為30°.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解高新產業(yè)園引進的甲公司前期的經營狀況,市場研究人員對該公司2019年下半年連續(xù)六個月的利潤進行了統(tǒng)計,統(tǒng)計數(shù)據(jù)列表如下:
月份 | 7月 | 8月 | 9月 | 10月 | 11月 | 12月 |
月份代碼 | 1 | 2 | 3 | 4 | 5 | 6 |
月利潤(萬元) | 110 | 130 | 160 | 150 | 200 | 210 |
(1)請用相關系數(shù)說明月利潤y(單位:萬元)與月份代碼x之間的關系的強弱(結果保留兩位小數(shù)),求y關于x的線性回歸方程,并預測該公司2020年1月份的利潤;
(2)甲公司新研制了一款產品,需要采購一批新型材料,己知生產新型材料的乙企業(yè)對A、B兩種型號各100件新型材料進行模擬測試,統(tǒng)計兩種新型材料使用壽命頻數(shù)如下表所示:
使用壽命 材料類型 | 1個月 | 2個月 | 3個月 | 4個月 | 總計 |
A | 15 | 40 | 35 | 10 | 100 |
B | 10 | 30 | 40 | 20 | 100 |
現(xiàn)有采購成本分別為10萬元/件和12萬元/件的A、B兩種型號的新型材料可供選擇,按規(guī)定每種新型材料最多可使用4個月,不同類型的新型材料損壞的時間各不相同,經甲公司測算,平均每件新型材料每月可以帶來5萬元收入,不考慮除采購成本之外的其他成本,假設每件新型材料的使用壽命都是整數(shù)月,且以頻率估計每件新型材料使用壽命的概率,如果你是甲公司的負責人,以每件新型材料產生利潤的期望值為決策依據(jù),你會選擇采購哪款新型材料?
參考公式:相關系數(shù);
回歸直線方程為,其中,.
參考數(shù)據(jù):,,,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地位于甲、乙兩條河流的交匯處,根據(jù)統(tǒng)計資料預測,今年汛期甲河流發(fā)生洪水的概率為0.25,乙河流發(fā)生洪水的概率為0.18(假設兩河流發(fā)生洪水與否互不影響).現(xiàn)有一臺大型設備正在該地工作,為了保護設備,施工部門提出以下三種方案:
方案1:運走設備,此時需花費4000元;
方案2:建一保護圍墻,需花費1000元,但圍墻只能抵御一個河流發(fā)生的洪水,當兩河流同時發(fā)生洪水時,設備仍將受損,損失約56000元;
方案3:不采取措施,此時,當兩河流都發(fā)生洪水時損失達60000元,只有一條河流發(fā)生洪水時,損失為10000元.
(1)試求方案3中損失費X(隨機變量)的分布列;
(2)試比較哪一種方案好.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com