9.通過隨機詢問110名性別不同的大學(xué)生是否愛好某處運動,得到如下的列聯(lián)表:
合計
愛好402060
不愛好203050
合計6050110
由卡方公式算得:K2≈7.8
附表:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
參照附表:得到的正確的結(jié)論是(  )
A.在犯錯的概率不超過0.1%的前提下,認為“愛好該運動與性別無關(guān)”
B.在犯錯的概率不超過0.1%的前提下,認為“愛好該運動與性別有關(guān)”
C.有99%以上的把握認為“愛好該運動與性別有關(guān)”
D.有99%以上的把握認為“愛好該運動與性別無關(guān)”

分析 由題目所給數(shù)據(jù),結(jié)合獨立檢驗的規(guī)律可作出判斷.

解答 解:∵觀測值k2=7.8>6.635,
∴在犯錯誤概率不超過0.1的前提下認為“愛好該項運動與性別無關(guān)”,
即有99%以上的把握認為“愛好該項運動與性別有關(guān)”.
故選:C.

點評 本題考查了獨立檢驗的應(yīng)用問題,屬基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知{an}是公差不為零的等差數(shù)列,Sn為其前n項和,S3=9,并且a2,a5,a14成等比數(shù)列,數(shù)列{bn}的前n項和為Tn=$\frac{{3}^{n+1}-3}{2}$.
(1)求數(shù)列{an},{bn}的通項公式;
(2)若cn=$\frac{{a}_{n}^{2}+8lo{g}_{3}_{n}}{{a}_{n+1}_{n}}$,求數(shù)列{cn}的前n項和M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.為了解適齡公務(wù)員對開放生育二胎政策的態(tài)度,某部門隨機調(diào)查了90位三十歲到四十歲的公務(wù)員,得到如下列聯(lián)表,因不慎丟失部分數(shù)據(jù).
(1))完成表格數(shù)據(jù),判斷是否有99%以上的把握認為“生二胎意愿與性別有關(guān)”并說明理由;
(2)現(xiàn)從有意愿生二胎的45人中隨機抽取2人,求男性公務(wù)員和女性公務(wù)員各一人的概率.
男性公務(wù)員女性公務(wù)員總計
有意愿生二胎301545
無意愿生二胎202545
總計504090
P(k2≥k00.0500.0100.001
k03.8416.63510.828
附:k2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知向量$\overrightarrow a,\overrightarrow b$滿足${\overrightarrow a^2}=4$,$|\overrightarrow b|=2$,$(\overrightarrow a+\overrightarrow b)•(3\overrightarrow a-\overrightarrow b)=4$,則$\overrightarrow a$與$\overrightarrow b$的夾角為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)拋物線x2=2py (P>0),M為直線y=-2p上任意一點,過M引拋物線的切線,切點分別為A,B,A,B,M的橫坐標分別為XA,XB,XM則(  )
A.XA+XB=2XMB.XA•XB=X${\;}_{M}^{2}$C.$\frac{1}{{X}_{A}}$+$\frac{1}{{X}_{B}}$=$\frac{2}{{X}_{M}}$D.以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在正方體ABCD-A1B1C1D1中,AA1=3,點E在棱AB上,點F在棱C1D1上,且平面B1CF∥平面A1DE,若AE=1,則三棱錐B1-CC1F外接球的表面積為19π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|{x}^{2}+2x-3|,x<2}\\{-{x}^{2}-2x+13,x≥2}\end{array}\right.$,若關(guān)于x的方程f(x)-m=0恰有五個不相等的實數(shù)解,則m的取值范圍是(  )
A.[0,4]B.(0,4)C.(4,5)D.(0,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知x,y∈R,i是虛數(shù)單位.若x+yi與$\frac{3+i}{1+i}$互為共軛復(fù)數(shù),則x+y=( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在學(xué)期初,某班開展任課教師對特困生的幫扶活動,已知該班有3名青年任課教師與4名特困生結(jié)成幫扶關(guān)系,若這3名青年教師每位至少與一名學(xué)生結(jié)成幫扶關(guān)系,又這4名特困學(xué)生都能且只能得到一名教師的幫扶,那么不同的幫扶方案的種數(shù)為( 。
A.36B.72C.24D.48

查看答案和解析>>

同步練習(xí)冊答案