分析 在平面直角坐標(biāo)系中作出這組約束條件的所對(duì)應(yīng)的平面區(qū)域,令Z=x+3y,則可得y=-$\frac{1}{3}$x+$\frac{1}{3}$z,則直線y=-$\frac{1}{3}$x+$\frac{1}{3}$z,在y軸截距越大,z越大,進(jìn)而計(jì)算可得答案.
解答 解:作出不等式組所表示的平面區(qū)域,如圖所示的陰影部分
令z=x+3y,做直線L:x+3y=0,把直線向可行域的上方平移,在y軸上的截距變大,z變大
當(dāng)直線過B(1,1)時(shí),Z最大,最大值為4
故答案為:4.
點(diǎn)評(píng) 本題考查線性規(guī)劃的運(yùn)用,解題的關(guān)鍵是正確作出可行域并分析目標(biāo)函數(shù)的最優(yōu)解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$或2 | B. | $\frac{3}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{2}$或2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\frac{{2\sqrt{3}}}{3}$ | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 3 | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1080 | B. | 540 | C. | 180 | D. | 150 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com